










NUMERICAL
MATHEMATICAL

ANALYSIS

BY

JAMES B. SCARBOROUGH, Ph.D.

PROPBSSOR OF MATHEMATIC! AT THE
17. B. NAVAL ACADEMY

9
OXFORD & IBH PUBLISHING CO.
New Delhi Bombay Calcutta



This book has been published with a subsidy under the Jndo-Amertean
Text Book Programme operated by National Book Trust, India.

Published by Mohan Prteohuu, Oxford and IBH Publishing Co., 66 Janpalh,

Now Delhi-1, 'gpIfKinted at Everest 4 Chamelian Road, Delhi-6.



NUMERICAL MATHEMATICAL
ANALYSIS





PREFACE

Applied mathematics comes down ultimately to numerical results,

and the student of any branch of applied mathematics will do well to

supplement his usual mathematical equipment with a definite knowl-

edge of the numerical side of mathematical analysis. He should, in

particular, be able to estimate the reliability of any numerical result

he may arrive at. The object of this book is to set forth in a systematic

manner and as clearly as possible the most important principles,

methods, and processes used for obtaining numerical results; and also

methods and means for estimating the accuracy of such results. The
book is concerned only with fundamental principles and processes,

and is not a treatise on computation. For this reason little attention

is paid to computation forms, the assumption being that the reader

who has much computation of a particular kind to do will be able to

devise his own form.

The plan of treatment followed throughout the book may be briefly

stated as follows: Each major subject or topic is introduced by a short

statement of “what it is all about.” Then follows a brief statement of

the underlying theory of the subject under consideration. With this

theory as a basis, the processes and formulas are then developed in

the simplest and most direct manner. Formulas and methods for check-

ing or estimating the accuracy of results are also worked out wherever

possible. The reader is then shown just how to use the formulas and
processes developed, by applying them to a variety of examples.

Finally, the limitations of the formulas and the pitfalls connected

with the processes are carefully pointed out by means of appropriate

examples. Notes and remarks are also added wherever they will throw

further light on the subjects under consideration.

The treatment of all topics has been made as elementary as was

consistent with soundness, and in some instances the explanations may
seem unnecessarily detailed. For such detailed explanations no apology

is offered, as the book is meant to be understood with a minimum of

effort on the part of the reader. Moreover, experience in teaching

certain topics has shown that even a good student must receive con-

siderable assistance from teacher, textbook, or some other source. I

have tried everywhere to clear up the difficulties before the student

meets them, so that no teacher or other source of information will be

needed. In order to make the book everywhere as readable as possible

I have purposely refrained from using notations peculiar to certain

subjects, and from employing symbolic methods and divided differences

;n deriving the standard formulas of interpolation. A knowledge of

vii
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calculus to the extent of the usual first course is all that is needed for

the understanding of anything in the book.

The more important formulas throughout the book are numbered
in heavy black type to distinguish them from those of less importance.

The worker who is to obtain numerical results with a minimum of

effort must provide himself with every possible aid for lessening the

labor of his task. In addition to such aids as slide rules, computing
machines, and logarithmic tables, the computer will find that Barlow's

tables of squares, cubes, etc., and the Smithsonian Mathematical Tables

are practically indispensable. Crelle's "Calculating Tables," Jahnke
and Emde's "Funktionentafeln,” and Jordan’s "Opus Palatinum"
(tables of natural sines and cosines to seven decimal places) will also

prove their worth in many instances.

In the preparation of the book I have consulted the writings of

the majority of previous writers on the subjects treated, and am in-

debted to many of them for ideas and methods; but my greatest debt

is to the writings of the late and great Carl Runge, who undoubtedly

contributed more to numerical mathematical analysis than any other

man since Gauss. References to the works of other writers will be

found here and there in the text and in footnotes.

It is a pleasure to record my thanks to the U. S. Naval Institute for

permission to use certain copyrighted material which I originally pre-

pared for Engineering Mathematics (1925, 1926); to Dr. L. M. Kells,

of the U. S. Naval Academy, for helpful criticism on parts of the manu-
script; and to the Johns Hopkins Press and the George Banta Publishing

Company for their hearty cooperation in meeting my wishes concerning

the make-up and publication of the book.

J. B. Scarborough
Annapolis ,

Md.
November

,
1930
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CHAPTER I

THE ACCURACY OF APPROXIMATE CALCULATIONS

1. Introduction. The art of computation is dealt with to some extent

in arithmetic, but the ordinary school arithmetics fail to give all the

ideas and methods the practical computer needs. These arithmetics

work only with exact numbers and say nothing about computation with

numbers which are correct to only a few figures. The result of such

teaching is that the student gets into the habit of making all com-

putations as long as possible, or else, if the labor seems too great, cuts

down some of the numbers to two or three figures and then gives his

results to as many figures as possible. This habit usually stays with

him throughout life and frequently causes him to get six-figure results

from three-figure data.

Now, as p matter of fact, the numerical data used in solving the

problems of everyday life are not exact, and the numbers expressing

such data are therefore not exact numbers. They are mere approxima-

tions, true usually to two, three, or more figures.

Not only are the data of practical problems usually approximate, but

sometimes the methods and processes by which the desired result is

to be found are also approximate. An approximate calculation is one

which involves approximate data, approximate methods, or both.

It is therefore evident that the error in a computed result may be due

to one or both of two sources: errors in the data and errors of calcula-

tion. Errors of the first type cannot be remedied, but those of the second

type can usually be made as small as we please. Thus, when such a

number as 7r is replaced by its approximate value in a computation,

we can decrease the error due to the approximation by taking 7r to as

many figures as desired, and similarly in most other cases. We shall

therefore assume in this chapter that the calculations are always car-

ried out in such a manner as to make the errors of calculation negligible.

Nearly all numerical calculations are in some way approximate, and

the aim of the computer should be to obtain results consistent with

the data with a minimum of labor. The object of the present chapter

is to set forth some basic ideas and methods relating to approximate

calculations and to give methods for estimating the accuracy of the

results obtained.

1



2 ACCURACY OF APPROXIMATE CALCULATIONS [Chap. I

2. Definitions. An approximate number is one which differs slightly

from the exact number for which it stands.* Thus, 1.4142 is an approxi-

mate number when it stands for\/2. Likewise, 3.1416 is an approximate

number when it is taken as the numerical value of tr.

A number is approximated by defect f when the approximate number is

less than the exact number; and it is approximated by excess when the

approximate number is greater than the exact number.

A significant figure is any one of the digits 1, 2, 3, •
• 9; and 0 is a

significant figure except when it is used to fix the decimal point or to

fill the places of unknown or discarded digits. Thus, in the number
0.00263 the significant figures are 2, 6, 3; the zeros are used merely to

fix the decimal point and are therefore not significant. In the number
3809, however, all the digits, including the zero, are significant figures.

In a number like 46300 there is nothing in the number as written to

show whether or not the zeros are significant figures. The ambiguity

’can be removed by writing the number in one of the forms 4.63 X104
,

4.630X104
,
or 4.6300 X104

,
the number of significant figures being

indicated by the factor at the left.

To round off or simply round a number is to retain a certail] number
of digits, counted from the left ,

and drop the others. Thus, to round off tt

to three, four, five, and six figures, respectively, we have 3.14, 3.142,

3.1416, 3.14159. Numbers are rounded off so as to cause the least

possible error. This is attained by rounding according to the following

rule:

To round off a number to n significant figures discard all digits to

the right of the nth place. If the discarded number is less than half a

unit in the nth place, leave the nth digit unchanged; if the discarded

number is greater than half a unit in the nth place, add 1 to the nth

,
digit. If the discarded number is exactly half a unit in the nth place,

leave the nth digit unaltered if it is an even number, but increase it by

1 if it is an odd number; in other words, round off so as to leave the nth

digit an even number in such cases.

The following numbers are rounded off according to the above rule:

3.65
|
43 = 3.65, 0.497

|
81 = 0.498, 22.6

|
5 = 22.6, 1.73

|
5 = 1.74.

The errors due to rounding are largely neutralized when the rule is

followed consistently.
•

* Some readers may object to the term “approximate number” and insist that one

should always say “approximate value” of a number. The shorter term, however, is

less cumbrous, is perfectly definite as defined above, and reminds us by its very name
that it stands for the approximate value of a number. It has been used in this sense by
no less an authority than Jules Tannery in his Leqons d'ArUhmetique.

t The word “defect” as here used means deficiency—the opposite of excess.
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When a number has been rounded off according to the rule stated

above, it is said to be correct to n significant figures.

3. Absolute, Relative, and Percentage Errors. The absolute error of

a number, measurement, or calculation is the numerical difference

between the true value of the quantity and its approximate value as

given, or obtained by measurement or calculation. The relative error

is the absolute error divided by the true value of the quantity. The
percentage error is 100 times the relative^ error. For example, let Q
represent the true value of some quantity. If AQ is the absolute error

of an approximate value of Q, then

AQ/^ = relative error of the approximate quantity.

\dt)AQ/Q — percentage error of the approximate quantity.

If a number is correct to « significant figures, it is evident that its

absolute error can not be greater than half a unit in the wth place. For
example, if the number 4.629 is correct to four figures, its absolute

error is not greater than 0.001 XJ = 0.0005.

Remark. It is to be noted that relative and percentage errors are

independenf of the unit of measurement, whereas absolute errors are

expressed in terms of the unit used.

4. Relation between Relative Error and the Number of Significant

Figures. The belief is widespread, even in scientific circles, that the

accuracy of a measurement or of a computed result is indicated by the

number of decimals required to express it. This belief is erroneous, for

the accuracy if a result is indicated by the number of significant figures

required to express it. The true index of the accuracy of a measurement

or of a calculation is the relative error. For example, if the diameter

of a 2-inch steel shaft is measured to the nearest thousandth of an

inch the result is less accurate than the measurement of a mile of rail-

road track to the nearest foot. For although the absolute errors in the

two measurements are 0.0005 inch and 6 inches, respectively, the rela-

tive errors are 0.0005/2 = 1/4000 and 1/10560. Hence in the measure-

ment of the shaft we make an error of one part in 4000, whereas in the

case of the railroad we make an error of one part in 10560. The latter

measurement is clearly the more accurate, even though its absolute

error is 12000 times as great.

The relation between the relative error and the number of correct

figures is given by the following fundamental theorem:

Theorem I. If thefirst significantfigure of a number is k, and the number

is 'correct Ho n significant figures, then the relative error is less than

l/OfeXlO-1
).

Before giving a literal proof of this theorem we shall first show that it
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holds for several numbers picked at random. Henceforth we shall

denote absolute and relative errors of numbers by the symbols E„
and Er , respectively.

Example 1. Let us suppose that the number 864.32 is correct to five

significant figures. Then k = &, n = 5, and Ea ^0.01 X$ = 0.005. For

the relative error we have

0.005 5 1

Er ^ = =
864.32 - 0.005 864320 - 5 2 X 86432 -1

1 1 1
= < <

2(86432 - J) 2 X 8 X 10' 8 X 10'

Hence the theorem holds here.

Example 2. Next, let us consider the number 369230. Assuming that

the last digit (the zero) is written merely to fill the place of a discarded

digit and is therefore not a significant figure, we have k = 3, n = 5, and

E«^10Xj = 5. Then

5 1 1

Er g =
369230 - 5 2 X 36923 - 1 2(36923 - \)

1 1

< <
2 X 3 X 10' 3 X 10'

Example 3. Finally, suppose the number 0.0800 is correct to three

significant figures. Then k = S, n — 3, 0.0001 X^ =0.00005, and

0.00005 5 1

Er g
0.0800 - 0.00005 8000 - 5 1600 - 1

1
___

1

~
2(800 - |)

<
8 X 102

It is to be noted that in this example the relative error is not certainly

less than 1/(2^X10B~'), as was the case in Examples 1 and 2 above.

To prove the theorem generally, let

j
N= any number (exact value),

|

» = number of correct significant figures,

j
m = number of correct decimal places.

Three cases must be distinguished, namely m<n, m — n, and m>n.

Case 1. m<n. Here the number of digits in the integral part of N
is « —m. Denoting the first significant figure of N by k, as before, we
have
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Hence

Er 5

11 11
Ea £— X —,

N ^ k X 10—

—

l X — •

10 " 2 10 " 2

1 1

X —
10 " 2 10-’"

1 1 2 k X 10"- 1 X 10-" — 10“"
k X 10"-"-' X —

10" 2

1 _ 1

2k X 10"- 1 - 1
~~

2(k X 10”- 1 -

Remembering now that n is a positive integer and that k stands for any
one of the digits from 1 to 9 inclusive, we readily see that 2&X10”-1— 1

>feX10"- 1 in all cases except k = l and n = 1. But this is the trivial

case where AT
=1, 0.01, etc.; that is, where N contains only one digit

different from zero and this digit is 1—a case which would never occur

in practice. Hence for all other cases we have 2kX 10"_1 — 1 >JfeX10"- 1

,

and therefore

1

• Er <
k X 10”- 1

Case 2. m — n. Here N is a decimal and k is the first decimal figure.

We then have

11 .11
Ea g X — i N ^ kX 10- 1 X — •

10- 2 10 " 2

10-" X h 10-

"

... Er g l =
k X 10-> - 10-" x i 2k X 10- 1 - 10-"

1 1
= <

2k x 10”- 1 - 1 k X 10”

-

1

1

2k X 10— 1 - 1

Case 3. m>n. In this case k occupies the (nt — n + 1 )th decimal place

and therefore

11 11
N ^ k X 10-<"-»+» X — » Ea ^ X — •

10" 2 10" 2

10-"Xi 10-"
... Er < =

~ kX 10“" X 10”“' - 10“ n X J 2k X 10- " X lO— 1 - 10-*

1 1
= <

2k X 10”“ l - 1 k X 10- :

1

The theorem is therefore true in all cases.
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Corollary 1 . Except in the case of approximate numbers of the form

£(1-000 • •
• )X10 P

,
in which £ is the only digit different from zero, the

relative error is less than l/(2£X10 n“1
).

Corollary 2. If k^S and the given approximate number is not of the

form £(1.000 • •
• )X10 P

,
then Er <l/10n

;
for in this case 2£^10 and

therefore 2£ X 10”-1 ^ 10”.

To find the number of correct figures corresponding to a given

relative error we can not take the converse of the theorem stated at the

beginning of this article, for the converse theorem is not true. In

proving th$ formula for the relative error we took the lower limit for TV

in order to obtain the upper limit for Er . Thus, for the lower limit of TV

we took its first significant figure multiplied by a power of 10. In the

converse problem of finding the number of correct figures corresponding

to a given relative error we must find the upper limit of the absolute

error Ea \ and since Ea = NEr ,
we should use the upper limit for TV. This

upper limit will be £+ 1 times a power of 10, where £ is the first sig-

nificant figure in TV. For example, if the approximate value of TV is

6895, the lower limit to be used in finding the relative error is 6X103
,

whereas the upper limit to be used in finding the absolute error is 7 X 103
.

To solve the converse problem we utilize Theorem II:

Theorem 77. If the relative error in an approximate number is less

than i/T(£ + 1) ^ lO”" 1

], the number is correct to n significant figures ,
or at

least is in error by less than a unit in the nth significant figure.

To Drove this theorem let

Then

TV= the given number (exact value),

n = number of correct significant figures in TV,

£== first significant figure in TV,

p — number of digits in the integral part of TV.

n—p = number of decimals in TV,

and 7VS(*+ 1)X10*- 1
.

Let

Er <
1

(£ + 1) X 10*~ l

Then

Ea < (£ + 1) X 10 p 1 X
1

(£ + 1) X 10"- 1

1

io*-*

Now 1/10”-* is one unit in the (w — p)th decimal place, or in the nth
significant figure. Hence the absolute error E a is less than a unit in

tlv: nth significant figure.
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If the given number is a pure decimal, let

/> = number of zeros between the decimal point and first significant

figure. Then n+p = number of decimals in N
t
and

(k+ 1 )

V < -——- •

10

Hence if

1

Er < ; >

(k + 1) x 10"- 1

we have

„ (* + l) 1 1

10”+1 (k + 1) x 10 n ~ l 10”+*

But 1 / 10^^ is one unit in the (w+/>)th decimal place, or in the wth

significant figure. Hence the absolute error E a is less than a unit in the

nth significant figure.

Corollary If Er <\/[2{k+ \) X10”"" 1
], then E a is less than half a

unit in the nth significant figure and the given number is correct to n

significant figures in all cases.

Corollary 4 . Since k may have any value from 1 to 9 inclusive, it is

evident that k+ l may have any value from 2 to 10. Hence the upper

and lower limits of the fraction l/[2(£+ l)Xl0 n~ 1

]
are l/(4X10 n~ 1

)

and 1/(2 X 10"), respectively. We can therefore assert that

If the relative error of any number is not greater than 1/(2 X 10”) the

number is certainly correct to n significant figures.

i(
Remark. The reader can readily see from the preceding discussion

|
that the absolute error is connected with the number of decimal places

,

r whereas the relative error is connected with the number of significant

j figures.

5. The General Formula for Errors. Let

(5: 1) N = f(u lt «2) «3)
• • «»)

denote any function of several independent quantities Hi, M2, • u„,

which are subject to the errors Atti, A •
• A ?/ n ,

respectively.

These errors in the w’s will cause an error AN in the function N
,
ac-

cording to the relation

(.?• 2) N + AN — f(u\ + ih + At/2, * «» + A«n)-

To find an expression for A A we must expand the right-hand member
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of (5: 2) by Taylor’s theorem for a function of several variables. Hence

we have

/(«i + Atti, u 2 + Att 2 ,

• •
• Un + AUn) = J(uu u2 ,

ttw) + A«r
d«i

a/ i r <*
2
/

+ A«2 f*
• •

• + Att* h - (A«i) 2— + •
• + (Attn

dih d«n 2 L dui 2

d°~f 1
+ ZAu\Au2

duidu* J

Now since the errors Au u &u 2l
•

•
• Aun are always relatively small,*

we may neglect their squares, products, and higher powers and write

(5:3) N + AN = f{uu « 2 ,
« 3 ,

• un)

df df df
H~ A«1 1“ Atto -j- . . .

-J- Attn
dui du2 dun

Subtracting (5: 1) from (5: 3), we get
o

df df df
AN = Atti H Att 2 + •

• H Aw„,
dtti du 2 dun

»r

dN dN dN ON
(5:4) AN = Atti H Au 2 H Am3 + • • H Awn .

dtii du 2 du 2 dun

This is the general formula for computing the error of a function,

and it includes all possible cases. It will be observed that the right-

hand member of (5: 4) is merely the total differential of the function

N.

For the relative error of the function N we have

(5:5)
AN dN Attx dN Att2 dN Au n

Et
~~N ~

dUi N
+

du2 ~N^ du„ ”aT

When N is a function of the form

Kamb n
c p

(5:6) N =
d<er

then by (5: 5) the relative error is

* A quantity P is said to be relatively small in comparison with a second quantity

Q when the ratio P/Q is small in comparison with unity. The squares and products of

such small ratios are negligible in most calculations.
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AN Aa Ab Ac Ad Ae

But since the errors Aa, •
• Ae, etc. are just as likely to be negative

as positive, we must take all the terms with the positive sign in order

to be sure of the maximum error in the function N. Hence we write

(5 : 7) Er ^m
Aa

+ ft

Ab
+ P

Ac

+ q

Ad
+ r

Ae

6. Application of the Error Formulas to the Fundamental Operations

of Arithmetic and to Logarithms. We shall now apply the preceding

results to the fundamental operations of arithmetic.

6a). Addition . Let

Then
N = Ui + «2 + • •

• + Un .

AN = Ea = Aui + An* + + Aun .

The absolute error of a sum of approximate numbers may therefore

equal the sum^of their absolute errors.

The proper way to add approximate numbers of different accuracies

is shown in the two examples below.

Example 1. Find the sum of the approximate numbers 561.32,

491.6, 86.954, and 3.9462, each being correct to its last figure but no

farther.

Solution. Since the second number is known only to the first decimal

place, it would be useless and absurd to retain more than twc decimals

in any of the other numbers. Hence we round them off to two decimals,

add the four numbers, and give the result to one decimal place, as

shown below:

491 .6

561.32

86.95

3.97

1143.8

By retaining two decimals in the more accurate numbers we eliminate

the errors inherent in these numbers and thus reduce the error of the

sum to that of the least accurate number. The final result, however,

is uncertain by one unit in its last figure.

Example 2. Find the sum of 36490, 994, 557.32, 29500, and 86939,

assuming that the number 29500 is know n .to only three significant

figures.
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Solution. Since one of the numbers is known only to the nearest

hundred, we round off the others to the nearest ten, add, and give the

sum to hundreds, as shown below:

29500

86940

36490

990

560

154500 or 1.545X10®.

The result is uncertain by one unit in the last significant figure.

In general, if we find the sum of tn numbers each of which has been

rounded off correctly to the same place, the error in the sum may be

as great as m/2 units in the last significant figure.

6b). Averages. An important case in the addition of numbers must
here be considered. Suppose we are to find the mean of several ap-

proximate numbers. Is this mean reliable to any more figures than are

the numbers from which it was obtained? The answer is yes, but in

order to see why let us consider the following concrete ca'se.

The first column below contains the mantissas of ten consecutive

logarithms taken from a six-place table. The second column contains

these same mantissas rounded off to five decimals. The third column
gives the errors due to rounding, expressed in units of the sixth decimal

place.

N
0.961421

0.961469

0.961516

0.961563

0.961611

0.961658

0.961706

0.961753

0.961801

0.961848

Average, 0.9616346 Av.,
= 0.961635

N' E
0.96142 1

0.96147 -1
0.96152 -4
0.96156 3

0.96161 1

0.9616$ -2
0.96171 -4
0.96175 3

0.96180 1

0.96185 -2

0.961635 Sum,
Av.,

-4
-0.4

Here we have the relation

N = N' + E

for each of the numbers and therefore the further relations
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2N = 2:N' + 2£
and

2tf _ 2AT' 2

£

n n n

It will be noticed that the average of the rounded numbers is in error

by only 0.4 of a unit in the sixth decimal place. We may therefore call

it correct to six decimals, or to one more place than the rounded

numbers.

The entries in all numerical tables and the results of all measurements

are rounded numbers in which the error is not greater than half a

unit in the last significant figure. These errors (due to rounding) are

in general as likely to be positive as negative and hence their algebraic

sum is never large. Usually it is less than half a unit in the last figure.

We may therefore w.rite

2£ < |
£

|

and
2£ £— < -

,

ft n

where 2Efn denotes the error of the average.

When w^lO, it is therefore evident that the average of ten or more

numbers which are given to n significant figures is usually true to

(w+ 1) significant figures.

The foregoing considerations justify the computer in retaining one

more figure in the mean of a set of numbers than are given in the num-
bers themselves. But rarely should he retain the mean to more than

one additional figure.

6c). Subtraction . Here

and
N = «i — w 2

AN = Ea = Atti — A«2*

Since the errors Awi and Au 2 may be either positive or negative, how-
ever, we must take the sum of the absolute values of the errors. We
then have the result that the absolute error of the difference of two
approximate numbers may equal the sum of their absolute errors.

When one approximate number is to be subtracted from another,

they must both be rounded off to the same place before subtracting.

Thus, to subtract 46.365 from 779.8, assuming that each number is

approximate and correct only to its last figure, we have

779.8 - 46.4 - 733.4.
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It would be absurd to write 779.800 — 46.365 = 733.435, because the

last two figures in the larger number as here written are not zeros.

The most serious error connected with the subtraction of approximate

numbers arises from the subtraction of numbers which are nearly equal.

Suppose, for example, that the numbers 64.395 and 63.994 are each

correct to five figures, but no more. Their difference, 64.395 — 63.994

= 0.401, is correct to only three figures. Again, if the numbers 16950

and 16870 are each correct to only four significant figures, their dif-

ference 16950— 16870 = 80 is correct to only one significant figure, and

even this, figure may be in error by one unit.

Errors arising from the disappearance of the most important figures

on the left, as in the two examples of the preceding paragraph, are of

frequent occurrence and sometimes render the result of a computation

worthless. They must be carefully guarded against and eliminated

wherever possible. They can be avoided in cases Where the two nearly

equal numbers can be approximated to any desired number of figures.

Thus, if we desire the difference \/2.03 — \/2 to five significant figures,

we can obtain it by taking \/2.03 = 1.424781 and \/2 = 1.414214; for

then 1.424781 — 1 .414214 = 0.010567.

In general, if we desire the difference of two approximate numbers

to n significant figures, and if it is known beforehand that the first

m figures at the left will disappear by subtraction, we must start with

m+n significant figures in each of the given numbers.

6d). Multiplication . In this case

N = Wi«2«3 ' 1 «n.

Since this is of the form (5: 6), in which *» = »=•••
by (5:7)

Er

AN Aui AU2

N Ui «2
+

Aun

Un

= r = 1, wre have

The relative error of a product of n approximate numbers may there-

fore possibly equal the arithmetic sum of the relative errors of the

separate numbers if all the errors happen to be of the same sign.

The accuracy of a product should always be investigated by means of

the relative error. The absolute error, if desired, can be found from the

relation Ea =ErN.

When it is desired to find the product of two or more approximate

numbers of different accuracies, the more accurate numbers should be

rounded off so as to contain one more significant figure than the least

accurate factor, for by so, doing we eliminate the error due to the more
accurate factors and thus make the error of the product due solely to



Art. 61 DIVISION 13

the errors of the less accurate numbers. The final result should be

given to as many significant figures as are contained in the least

accurate factor, and no more. The proper method of procedure in such

cases will be illustrated by examples later on.

6e). Division . Here we have

u2

This is also of the form (5:6;, where the exponents are all unity.

Hence by (5 : 7)

AU\ A7^2

Er = 1
•

U
I 7*2

The relative error of a quotient may therefore equal the sum of the

relative errors of divisor and dividend.

As in the case of products, the accuracy of a quotient should always

be investigated by means of the relative error, and all the statements

made above in regard to products hold for quotients. In particular,

if one of the {lumbers (divisor or dividend) is more accurate than the

other, the more accurate number should be rounded off so as to contain

one more significant figure than the less accurate one. The result

should be given to as many significant figures as the less accurate

number, and no more. The following examples will illustrate the

proper methods of investigating the accuracy of products and quo-

tients.

Example 1 . Find the product of 349.1X863.4 and state how many
figures of the result are trustworthy.

Solution . Assuming that each number is correct to four figures but

no more, we have Ami^O.OS, A7y 2 ^0.05. Hence

0.05 0.05
Er

< + = 0.000143 + 0.000057 = 0.00020.
”349.1 863.4

The product of the given numbers is 301413 to six figures. The
absolute error of this product is

Ea = 301413 X 0.00020 = 60, possibly.

The true result therefore lies between 301473 and 301353, and the best

we can do is to take the mean of these numbers to four significant

figures, or

349.1 X 863.4 = 301400 = 3.014 X 106
.

Even then there is some uncertainty about the last figure.
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Theorem II of Art. 4 also tells us that the above result is uncertain

in the fourth figure, but that the error in that figure is less than a unit.

Example 2. Find the number of correct figures in the quotient

56.3/-\/S, assuming that the numerator is correct to its last figure

but no farther.

Solution. Here we take VS = '2.236 so as to make the divisor free

from error in comparison with the dividend. Then

0.05
Er g < 0.0009;

56.3

and since 56.3/2.236 = 25.2 we have

£„ < 25.2 X 0.0009 < 0.023.

Since this error does not affect the third figure of the quotient, we
take 25.2 as the correct result.

We could have seen at a glance, without any investigation, that the

error of the quotient in this example would be less than 0.025; for

the denominator is free from error and the possible error of 0.05 in the

numerator is to be divided by 2.236, thereby making the error of

the quotient less than half that amount.

Example 3. Find how many figures of the quotient 4.89tt/6.7 are

trustworthy, assuming that the denominator is true to only two figures.

Solution. The only appreciable error to be considered here is the

possible 0.05 in the denominator. The corresponding relative error is

0.05
Er g < 0.0075.

6.7

The quotient to three figures is

4.89 X 3.14
= 2.29.

6.7

Hence the possible absolute error is E a g 2.29X0.0075 <0.02. Since

the third figure of the quotient may be in error by nearly two units,

we are not justified in calling the result anything but 2.3, or

4.89ir

6f). Powers and Roots . Here N has the form

Hence by (5 : 7)

N = um .
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Er ^ m-
Au

For the pth power of a number we put m = p and have

Au

u
Er g

The relative error of the pth power of a number is thus p times the

relative error of the given number.

For the rth root of a number we put m = 1/r and get

1 Au
Er ^

r u

Hence the relative error of the rth root of an approximate number is

only 1/rth of the relative error of the given number.

Example . Find the number of trustworthy figures in (0.3862) 4
, as-

suming that the number in parentheses is correct to its last figure but

no farther.

Solution. Here the relative error of the given number is

Er

0.00005
< 0.00013.

0.3862

The relative error of the result is therefore less than 4X0.00013, or

0.00052.

The required number to five figures is (0.3862) 4 = 0.022246. Hence
the absolute error of the result is 0.022246X0.00052 = 0.000012. Since

this error affects the fourth significant figure of the result, the best we
can do is to write

(0.3862) 4 = 0.02225

and say that the last figure is uncertain by one unit.

The relative error of the fourth root of 0.3862 is less than 1(0.00013)

=0.000032, and since this fourth root is 0.78832 the absolute error of

the result is about 0.78832X0.000032 = 0.000026. Hence the fourth

root is 0.7883 correct to four figures.

6g).‘ Logarithms. Here we have

N = logio u = 0.43429 log, «.

Hence
Aw

AN = 0.43429

—

u
or
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AN < —
2

Au

u

The absolute error in the common logarithm of a number is thus

less than half the relative error of the given number.

An error in a logarithm may cause a disastrous error in the anti-

logarithm or corresponding number, for from the first formula for AN
above we have

uAN
Aw — = 2.3026wAN.

0.43429

The error in the antilog may thus be many times the error in the loga-

rithm. For this reason it is of the utmost importance that the logarithm

of a result be as free from error as possible.

Example 1. Suppose N = logiow = 3.49853 and AN <0.000005, so

that the given logarithm is correct to its last figure. Then u = 3151.6

and therefore

Aw = 2.3 X 3151.6 X 0.000005 = 0.036.

Since this error does not affect the fifth figure in w, the antilog is correct

to five figures.

Example 2. Suppose N = logio u = 2.96384 and AN = 0.00001. Then

w = 920.11 and

Aw = 2.3 X 920.11 X 0.00001 = 0.021.

This error affects the fifth figure in u and makes it uncertain by two

units.

Inasmuch as the logarithm of most results is obtained by the addition

of other logarithms, it is evident that such a logarithm is likely to be

in error by a unit in the last figure, due to the addition of rounded

numbers. Hence the corresponding number may frequently be in error

by one or two units in its last significant figure when the number of

significant figures in the antilog is the same as the number of decimals

in the logarithm.

Remarks . The reader should bear in mind the fact that the number
of correct figures in the antilog corresponds to the number of correct

decimals in the logarithm. The integral part, or characteristic, of the

logarithm plays no part in determining the accuracy of the antilog.

This fact is at once evident from a consideration of the equation

Au
• — = 2.3AN.

w
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For inasmuch as the number of correct figures in the antilog u is

measured by its relative error, and since this latter quantity depends
only on the absolute error AN and not at all on the characteristic, it is

plain that the accuracy of the antilog depends only on the number of

correct decimals in the mantissa.

It is an easy matter to determine the number of correct figures in

any antilog when the number of correct decimals in the mantissa is

given. Suppose, for example, that we are using w-place log tables

and that the possible error in the logarithm of a result is one unit in

the last decimal place, as is usually the case. Then AiV=l/10m and
we have

Au 2.3 2.3
1 ^

1

u 10"* 10 X 10 m_l 4.34 X 10"*- 1

<
2 X 10 m

‘
1

Hence by Corollary 4, Art. 4, the antilog u is certainly correct to iw —

1

significant figures.

The equation Au/u = 1/(4.34 X 10 m_1 ) shows that if the mantissa is

in error by two units in its last figure the antilog is still correct tom-1
significant figures, for in this case the relative error of the antilog is

Au 1

u ~ 2.17 X 10—

which is less than 1/(2 Xl0m-1
)* We are therefore justified in asserting

that if the mantissa of a logarithm is not in error by more than twro units

in the last decimal place the antilog is certainly correct to m — 1

significant figures.

7. The Impossibility, in General, of Obtaining a Result More Ac-

curate than the Data Used. The reader will have observed that in all

the examples worked in the preceding pages no result has been more

accurate than the numbers used in obtaining it. This, of course, is

what we should have expected, but sometimes computers seem to try

to get more figures in the result than are used in the data. When we
apply corollaries 1 and 4 of Art. 4 to the errors of products, quotients,

powers, roots, logarithms, and antilogarithms, we find that in no case

is the result true to more figures than are the numbers used in com-

puting it. The results for these operations are as follows:

(a) Products and Quotients. If k\ and are the first significant

figures of two numbers which are each correct to n significant figures,

and if neither number is of the form fe(1.000 • •
• )X10 p

, then their

product or quotient is correct to

w — 1 significant figures if ki^2 and & 2 s= 2 ,

» — 2 significant figures if either ki=l or £*=!.
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(b) Powers and Roots. If k is the first significant figure of a number
which is correct to n significant figures, and if this number contains

more than one digit different from zero, then its />th power is correct to

n— 1 significant figures if p^k,
n— 2 significant figures if p^lOk;

and its rth root is correct to

n significant figures if rife ^10,

n— 1 significant figures if rife <10.

(c) LQgs and Antilogs. If k is the first significant figure of a number
which is correct to n significant figures, and if this number contains

more than one digit different from zero, then for the absolute error in

its common logarithm we have

Ea <
4ife X 10"-1

If a logarithm (to the base 10) is not in error by more than two

units in the with decimal place, the antilog is certainly correct tom-1
significant figures.

To prove the foregoing results for the accuracy of products and

quotients let and kt represent the first significant figures of the given

numbers. Then by corollary 1 of Art. 4 the relative errors of the numbers

are less than l/(2ifeiX 10n_1) and l/(2ifejX10n_1), respectively; and since

the relative error of the product or quotient of two numbers may equal

the sum of their relative errors, we have

Relative error of result

1 1 / 1 1\ 1

<
2kx X lO"-1

+
2/fe 2 X 10"" 1 ~

\Jfei

+
kj 2 X 10—1

Now if (l/ifci+l/ifea) :£ 1 we have Er < 1/(2 X 10’*-1
), and the product

or quotient is certainly correct to n — 1 significant figures. But this

quantity is not greater than 1 if jfei^2 and kt*z2. Hence in this case

the result is correct to n— 1 significant figures. If, however, either

ifei — 1 or jfe» = l, the quantity (l/ki+l/kt) >1 and therefore the relative

error of the result may be greater than 1/(2 X 10n-1). Hence the result

may not be correct to n — 1 significant figures, but it is certainly correct

to n—2 figures.

To prove the above results for the accuracy of powers and roots let

k represent the first significant figure of the given number. Then the

relative error of this number is less than 1/(2k X 10n_1). Hence the

relative error of its £th power is less than

P _ P 1

2/fe.XlO*-
1 k 2X10*-1

The result will therefore be correct to n— 1 significant figures if

(p/k) ^ 1, or p^k, and to n—2 significant figures if p^lOk.
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The error of the rth root is less than

1 1 _ 1 1 10 1

r 2kX10n~' ~ rk 2X10 n“1 ~
Tfc 2X1

0

n '

Hence the result will.be correct to n significant figures if rk ^ 10 and to

« — 1 significant figures if rk< 10.

To prove the result for the error of the common logarithm we recall

that AN <\Au/u, and since Aw/wCl/^feXlO*”1

) we have

1

AN <
4* X 10"- 1

The proof for the accuracy of the antilog has already been given at

the end of Art. 6.

Since the separate processes of multiplication, division, raising to

powers, and extraction of roots can not give a result more accurate than

the data used in obtaining it, no combination of these processes could

be expected to give a more accurate result except by accident. Hence
when only these processes are involved in a computation, the result

should never be given to more significant figures than are contained

in the least accurate of the factors used. Even then the last significant

figure will usually be uncertain. In a computation involving several

distinct steps, retain at .the end of each step one more significant

figure than is required in the final result.

While it is true in general that a computed result cannot be more
accurate than the numbers used in obtaining it, an exception must be

made in the cases of addition and subtraction. When only these proc-

esses are involved, the result may be much more accurate than one of

the quantities added or subtracted. For example, the sum 3463+ y/3
= 3463+ 1.7 = 3464.7 is correct to five significant figures (assuming

3463 to be an exact number) even though one of the numbers used in

obtaining it is correct to only two figures. A similar result would

evidently follow in the case of subtraction.

8. Accuracy in the Evaluation of a Formula or Complex Expression.

The two fundamental problems under this head are the following:

(a) Given the errors of several independent quantities or approximate

numbers, to find the error of any function of these quantities.

(b) To find the allowable errors in several independent quantities

in order to obtain a prescribed degree of accuracy in any function of

these quantities.

8a). The Direct Problem. The first of these problems is solved by

replacing the given approximate numbers by the letters a, b, c, • •• or

«i, Uj, « 3 ,
taking the partial derivatives of the function with respect to

each of these letters, and then substituting in formula (5:4) or (5:5).
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An exact number, such as 2, 3, 10, etc., is not replaced by a letter before

taking the derivatives.* We shall now work some examples to show the

method of procedure.

Example 1. Find the error in the evaluqjion of the fraction

cos 7°1071ogio 242.7, assuming that the angle may be in error by 1'

and that the number 242.7 may be in error by a unit in its last figure.

Solution . Since this is a quotient of two functions, it is better to

compute the relative error from the formula Er ^Aui/ui+Au 2/u 2 and

then find'the absolute error from the relation E a = NEr > Hence if we
write

cos 7° 10' cos x U\
N * = = —

,

logio 242.7 logio y u 2

we have

Aui = A cos x = — sin xAx
f

Aw 2 = A log I0 y = 0.43429—— •

y

sin .r 0.43429
/. Er g A* H Ay,

cos x y log y
or

0.435
Er ^ tan xAx H Ay.

ylogy

Now taking x = 7°1 O', Ax = 1
' = 0.000291 radian, y = 242, Ay = 0.1,

and using a slide rule for the computation, we have

0.435 X 0.1
Er < 0.126 X 0.000291 + = 0.00011.

242 X 2.38

Since N = cos 7°10'/log 242.7=0.41599, we have

Ea = 0.00011 X 0.416 = 0.000046,

or E a <0.00005.

The value of the fraction is therefore between 0.41604 and 0.41594,

and we take the mean of these numbers to four figures as the best

value of the fraction, or

AT= 0.4160.

* Adopted or accepted values of physical, chemical, and astronomical constants are

to be treated as exact numbers, hut results obtained by using these numbers as multi-

pliers or d ivisors are not to be relied upon to more significant figures than are used in the

constants themselves.
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Example 2. The hypotenuse and a side of a right triangle are found

by measurement to be 75 and 32, respectively. If the possible error in

the hypotenuse is 0.2 and that in the side is 0.1, find the possible error

in the computed angle A .

»

Solution. Lettering the triangle in the usual manner, we have

and

Now

32 a
Mn A = — = — •

75 c

= sit*'
1

(“)

SA a.l

A.l = Aa 4
da dc

dA 1

da \ <’ 5 - a 1

’

dA — a

dc 6’\ c'- -'ll*

'

Taking the numerical values of c and a in such a manner as to give the

upper limits for dA!da and dA/dc, and remembering that Aa = 0.1,

Ac = 0.2, we have

A.4 <
1

\/( 74 .8)
2— (32.1 1

*
XO.l-i-

32.1

74.8\/(74.8) 2— (32. 1)
2
X 0.2 = 0.00275,

or

A.l < 0.0028 radian = (/38".

The possible error in A is therefore 9'38".

Sb). The Inverse Problem. We now turn our attention to the second

fundamental problem mentioned at the beginning of this article: that

of finding the allowable errors in «i, w„ when the function N
is desired to a given degree of accuracy. This problem is mathematically

indeterminate, since it would be possible to choose the errors Au it

Aut, etc. in a variety of ways so as to make AN less than any prescribed

quantity. The problem is solved with the least labor by using what is

known as the principle of equal effects.* This principle assumes that all

the partial differentials (dN/dui)Aui, (dN/dui)Aui, etc., contribute an
equal amount in making up the total error AN. Under these conditions

* See Palmer's Theory of Measurements, pp. 147-148.
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all the terms in the right-hand member of equation (5 : 4) are equal to

one another, so that

Hence

dA dN
AN = n—Aui = n—Aui =

du d»2

A»i
AN

dN

'

n
dui

AA
Am 2 = >

•

dN
n
dtt2

dN
— n A

du„

Am»
AN

dN
'

n
dun

Example 3. Two sides and the included angle of a triangular city lot

are approximately 96 ft., 87 ft., and 36°, respectively. Find the allow-

able errors in these quantities in order that the area of the lot may be

determined to the nearest square foot.

Solution. Writing b — 96, c — 87, A =36°, and denoting the area by u,

we have

« = \bc sin A = J(96 X 87 sin 36°) = 2455 sq.ft.

Hence

du 1 du 1 du 1— = —

c

sin A, — = —

b

sin A

,

= —be cos A .

db 2 dc 2 dA 2

Substituting these quantities in (5 : 5), we find

Am Ab Ac AA— = — -)
1

•

u b c tan A

Now since the area is to be determined to the nearest square foot we
must have Am <0.5; and by the principle of equal effects we must have

Ab

b

1 Am 0.5

3 m 3 X 2455

1

< 0.000068.
14730

Hence Ab <96X 0.000068 = 0.0065 ft.

In like manner

Ac 1 Am— =
» or Ac < 87 X 0.000068 = 0.0059 ft.

;

c 3 m

AA 1 Am
> or AA < tan 36° X 0.000068 = 0.000049 radian.

tan A 3 m
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Hence from a table for converting radians to degrees we find LA = 10".

It thus appears that in order to attain the desired accuracy in the area

the sides must be measured to the nearest hundredth of a foot and the

included angle to the nearest 20" of arc.

This problem could also be solved by assuming that the possible

errors in the measured sides might be 0.005 ft. and then computing the

permissible error in the measured angle.

Example 4. The value of the function 6x! (logio x— sin 2y) is required

correct to two decimal places. If the approximate values of x and y
are 15.2 and 57°, respectively, find the permissible errors in these

quantities.

Solution. Putting

u = 6x2
(logi 0 x — sin 2y) ~ 6(15.2) 2(logi 0 15.2 — sin 114°)

= 371.9,

we have

du— = 12x(logio x — sin 2y) + 6x X 0.43429 = 88.54,
di

— = — 12x2 cos 2y = 1127.7.
dy

Hence
du du „

Aw = — AxH Ay — 88.54Ax 1127. 7Ay.
dx dy

In order that the required result be correct to two decimal places

we must have Aw <0.005. Then by the principle of equal effects we have

Aw

t.

dx

0.005

2 X 88.54
0.000028,

Ay
Aw

dw
2—
dy

0.005
<
2X 1127.7

O'. 45

0.0000022 rad.

Since the permissible error in x is only 0.00003, it will .be necessary

to take- x to seven significant figures in order to attain the required

c igree of accuracy in the result. The value of y can then be taken to the

learest second
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Remark . It is neither necessary nor desirable to investigate the

accuracy of all proposed computations. But when we are in doubt

about the possibility of attaining a certain degree of accuracy in the

final result, we should make the necessary investigation. It usually

suffices to carry all computations to one more figure than is desired

in the final result and then round off the result to the desired number
of figures, if the accuracy of the given independent quantities is such

as to permit this.

9. Accuracy in the Determination of Arguments from a Tabulated

Function. In many problems it is necessary to compute some function

of an unknown quantity and then determine the quantity from tabu-

lated values of the function. Examples of this kind ar^ the determina-

tion of numbers from a table of logarithms, and angles from

trigonometric tables. If the computed function happens to be affected

with an error, the argument determined from this function is necessarily

incorrect in some degree. The purpose of this article is to investigate

the accuracy of the argument whose value is required.

In tables of single entry are tabulated functions of a single argument.

Calling x the argument and y the tabulated function, we have

(9:1) y = /U).

From this we get the relation

(9: 2) Ay = f'(x)Ax, approximately,

from which we have

A^v

(9:3) Ax = ——
fix)

This is thefundamental equation for computing the error in arguments

taken from a table. Here Ay represents the error in the computed func-

tion whose values are tabulated, and Ax is the corresponding error in

the argument. It will be noted that the magnitude of Ax depends upon
three things: the error in the function, the nature of the function, and
the magnitude of the argument itself. We shall now apply (9: 3) to

several functions whose values are tabulated.

1 . Logarithms .

(<*) f(x) = log e x.

f'(x) = - •

x
!

Ax = xAy

,

from (9:3).(9:4)
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w f(x) = log|(j JC.

M
f'{x) = — , where 3/ = 0.43429.

.T

.rAv
A.r = —1 = 2.3026.rAv.

M J

Hence

(9:5) Ax < 2.31xAy.

Z . Trigonometric Functions .

(a) f(x) = sin x .

/'(.v) = cos X.

Ai>

(9:6) A# = — = sec xAy radians,
cos X

•
or

(9:7) (Ax)" = 206264.8 sec xAy seconds.

to f(x) = tan x .

f'(x) = sec2 x.

(9:8) Ax = cos 2 xAy radians,

or

(9:9) (Ax)” = 206264.8 cos 2 xAy seconds.

to f(x) - log io sin x.

COS .T

f(x) = M = M cot x.
sin x

(9: 10)

Ay
Ax = 2.3026 tan xAy radians,

M cot x

or

(9: 11)

•

(A*)" < 475000 tan xAy seconds.



26 ACCURACY OF APPROXIMATE CALCULATIONS [Chap. I

M> f{x) - logio tan X.

sec* x M 2M
/'(*) = M

tan x sin x cos x sin 2x

sin 2xAy
Ax 1 . 1513 sin 2xAy,

2M
or

(9: 12) A* < 1.16 sin 2*Ay radians;

and'

(9: 13) (A*)" < 238000 sin 2*Ay seconds.

3 . Exponential Functions .

/(*) = «x -

/(*) =

a>
(9: 14) Aac = —— •

4. Other Tabulated Functions. By means of the fundamental equation

(9: 3) we can compute the error in any argument when the derivative of

the given function is given or can be easily found. In Jahnke and Emde’s

Funktionentafeln, for instance, are tabulated the derivatives of

log r(*+l), the error function Jle~
x%dx, the Weierstrass ^-function,

P(u), and Legendre’s polynomials Pn(x). Hence by means of these

tables we can determine the argument and also its error.

Elliptic integrals are functions of two arguments. The error in each

of these arguments can not be determined uniquely, but by using for-

mula (5 : 4) and assuming the principle of equal effects we can find

definite formulas for the errors in the arguments. Thus, denoting an

elliptic integral by I and the function of the arguments by F{6, <f>),

we have

I = F(0, <f>)

.

Hence
6F 9F

A/ = —AO -) A<p.

66 6<t>

By assuming that the two terms on the right-hand side are equal; we

A/ A/
A6 , A<(> —
6F 9F
1 2— 2—

96 9<t>
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Knowing the error AI of the integral, we can find from these formulas

the corresponding errors in 0 and <t>.

Remarks. Comparison of formulas (9: 6) and (9: 8) shows that the

error made in finding an angle from its tangent is always less than when
finding it from its sine, because cos* x is less than sec x. The latter may
have any value from 1 to ®, whereas the value of the former never

exceeds 1.

Formulas (9: 10) and (9: 12) show still more clearly the advantage

of determining an angle from its tangent. It is evident from (9: 12)

that the error in x can rarely exceed the error in y, since sin 2x can not

exceed 1, but (9: 10) shows that when the angle is determined from its

log sine the error in x may be many times that in y.

Let us consider a numerical case. Suppose we are to find x from a

5-place table of log sines. Since all the tabular values are rounded
numbers, the value of Ay may be as large as 0.000005, due to the

inherent errors of the table itself. Taking * = 60° and substituting in

(9: 10), we get

Ax = 2.3026\/3 X 0.000005

= 0.00002 radian, about,

= 4".l.

The unavoidable error may therefore be as great as 4 seconds if we find

x from its log sine.

If, on the other hand, we find x from a table of log tangents we have

from (9:12)

Ax < 1.16 X $\/3 X 0.000005 = 0.000005 rad.

- 1 ".

The error is thus only one-fourth as great as in the preceding case.

The foregoing formulas simply substantiate what has long been

known by computers : that an angle can be determined more accurately

from its tangent or cotangent than from its sine or cosine.

10. The Accuracy of Series Approximations. It is frequently easier

to find the numerical value of a function by expanding it into a power

series and evaluating the first few terms than by any other method. I*

fact, this is sometimes the only possible method of computing it. The
general method for expanding functions into power series ls-by means of

Taylor’s formula. The two standard forms of this formula, are the

following

:
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(*— a)
2 (rue— a) n~ l

(10:1) A*)-A«)+(*-®)/WV-p-fW+ * * +- f n~ l)
(a)

2! (»— 1*)!

(x—a) n
r .+ /-/<»> [a+0(*-a) ], 0 < 0 < 1.

«!

(10 : 2) f(*+«-/(«)+V'(*>+^/"(*)+ • +7~~rr/
(— ’(*)

j.
2!

+— / (">(*+0/O, 0 < 0 < 1.

«!

On putting a = 0 in ( 10 : 1 ) we get Maclaurin’s formula:

(10: 3) /(*) = f(0)+ xf'{0) + + •
• + 7

—

—

7
— /

<w~ 1 )

(0)
2 ! (w— 1 )!

+—f(n) (0x), 0 <6 < 1.

n\

The last term in each of these three formulas is the remainder after

n terms. This remainder term is the quantity in which we shall be
interested in this article. The forms of the remainder given above are

not the only ones, however. Another useful form will be given below.

10a). The Remainder Terms in Taylor's and Maclaurins Series .

Denoting by Rn {x) the remainder after n terms in the Taylor and
Maclaurin expansions, we have the following useful forms:

1 . For Taylor’s formula (10 : 1 ):

() Rn(x) = /(")[g + e(x - a)]. 0 <0 < 1.
n\

() Rn(x) = - - ----- f
1

V n) (* - t)t
n~ xdt.

(n— 1 )! d o

2 . For Taylor’s formula ( 10 : 2 )

:

(a) Rn (x) = /<">(* + 6h), 0 < 6 < 1

.

n\

(b) Rn(x) = —

-

l-— f>(. + h - t)r~'dt.
(«- 1 )! Jo

3. For Maclaurin’s formula:

(a) Rn(x) = — 0 < 6 < 1.

»!
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It will be observed that the second form (the integral form) is per-

fectly definite and contains no uncertain factor 0. In using either form,

however, it is necessary first to find the nth derivative off(x).

Since the integral form of Rn (x) is not usually given in the text books

on calculus, we shall show how to apply it to an example.

Example . Find the remainder after n terms in the expansion of

log. (x+h).

Solution . Here

/(.r) = log e x,

f(x) =
X

/"(.v) = -1,

ru)-~,
A

' 3

• 6
/"(*) = —:>

A
' 4

„ „ s
(~ 1)- ,(n-l)!

/
(n,

(*)

« (- l)- 1

(« - l)! r * l

(*-!)!•/« (
J 0 (x + h — ty

Now since / varies from 0 to h, the greatest value of Rn (.x) is obtained

b> putting t = h in the integrand. We then have, omitting the factor

(— which is never greater than 1,

Rn {x) <
1 h n

t
n~'dt =

xn n

Suppose 3c=l, 1j = 0.01. Then h/x = 0.01. If, therefore, we wish to

know how many terms in the expansion of log. 1.01 are necessary in

order to get a result correct to seven decimal places we take

Rn£ 0.00000005.

... -1(0.01)* = 0.00000005.
n
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It is evident by inspection that n = 4 will give a remainder much
smaller than the allowable error. Hence we take four terms of the

expansion of log (x+h).

The reader can easily verify that the first form of remainder gives

the same result as that just found.

10b). Alternating Series . An alternating series is an infinite series

in which the terms are alternately positive and negative. Such a series

is convergent if (a) each term is numerically less than the preceding

and,(b) the limit of the nth term is zero when n becomes infinite.

Alternating series are of frequent occurrence in applied mathematics

and are the most satisfactory for purposes of computation, because it

is always an easy matter to determine the error of a computed result.

The rule for determining the error is simply this:

In a convergent alternating series the error committed in stopping with

any term is always less than the first term neglected.

Thus, since

X 2 X 3 X A xh

log.(l + *)-,- T + T
-
T + T

-

we have
fO.Ol) 2 (0.01)*

log. (1.01) = 0.01 +— + R,
2 3

where R< |(0.01)V4 |

=0.0000000025.

We therefore get a result true to eight decimal places by taking only

three terms of the expansion.

10c). Some Important Series and Their Remainder Terms. Below are

given some of the most useful series and their remainder terms, alter-

nating series not being included because their remainder terms can be

computed by the rule given above.

1 . The Binomial Series.

m(m - 1)
,

m(m - \){m -2)
(1 + x) m = 1 + rnx 4 x2 4 — x3

-f
2 ! 3!

+
where

m(m — l)(m — 2) • • (m — n 4- 2)

(*"_ i)!

:
•n—

1

+ Rn

m(m — 1){m — 2) •••(» — »+ 1) ,

(a) R, — *n(l + 0x) m~ n
, 0 < 0 < 1,

in all cases.
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(i) Rn <
m(m — 1)(m — 2)

•
• (m — n + 1)

n!
t
n

if x > 0.

m{m — \){m — 2) • (m — n + 1)

n!
w

I nl (1 + *)—

I

if x<0 and n>m.

(d) Rn < | |
(1 + x) m if - 1 < m < 0.

If m is a fraction, positive or negative, or a negative integer, the

binomial expansion is valid only when \x
|
< 1. Also, except when m is

a positive integer
,
a binomial such as (a+6) m must be written in the

form
/ b\ m

/ a\ m

a m ll H ) if a > b, or b
m

l 1 +
—J

if b > a,

before expanding it.

2. Exponential Series .

^•2 ^-3 —

1

w '- i+ * +
»
+

T’
+ - +^rti

+y-

0) — i + .i,„. +i!^ + ... +<^C +<^5±V

If in (a) we put x — \ we get the following series for computing e :

til 1 e*

W e , , + + +
2 3! 4!

Rn = — •

But since €<3 and 0^ 1, it is plain that

0 *n <-•
nl

A more definite formula for Rn can be found as follows:

Writing more than n terms of the series (c), we have

1 1 1

-I
1

—

H h
»! (»+!)! (» + 2)

!
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where the remainder after n terms is

1 1 1

—
1 f- + • • •

«! (« + l)l (» + 2)!

1/1 1 \

w! V n -f- 1 (w -f* 1 )(m 2) /

The quantity in parenthesis on the right is clearly less than the sum
of the, geometric series

1 1 1

1H — +—
n n l n 3

the sum of which is

1 n

1 n — 1

1

n

Hence

(e)

1 n
Rn<—

nl n —
i or Rn <

1

(

n

— 1)(n — 1)!

By means of this formula (e) we can find the requisite number of

terms in the expansion (c) to give the value of e correct to any desired

number of decimal places. Thus, if we wished to find e correct to ten

decimal places by means of the series (c) we would find n from the equa-

tion l/(» — l)(n — 1)! = 0.00000000005. With the aid of a table of the

reciprocals of the factorials we find that n — 1 = 13, or n = 14. We
should therefore take 14 terms of the series (c). We find in like manner

that in order to compute e correct to 100 decimal places we should take

71 terms of the series (c).

3 . Logarithmic Series .

r 1 1 1

log (m + 1) = log m + 2 1 1 h
* L2m + 1 3(2m + D s 5(2w + 1)‘

1

+
(2» — \){2m + l) 2"-1

where

Rn <
4

(2w + l)(2wt + !)*"+»
’

. Thus, to find log. 5 correct to ten decimal places we have m+1 —5,

or w=4. Then
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4 1 ^
1

(2n + l)(S)*»+l “ io*®
XT

We find by trial that n = 7 is more than sufficient to insure the desired

accuracy. We should therefore take seven terms of the series within

the brackets.

lOd). Some nth Derivatives. In computing the remainder term in a

series it is necessary to have the nth derivative of the given function.

To facilitate the calculation of Rn we therefore give below a list of nth

derivatives of some simple functions. The symbol D denotes differentia-

tion with respect to x, or D=d/dx.

(a) Dnax

(b) Dn sin x

(c) Dn cos x

(<0 °’C+J'

(e) W-4=v\Va + bx)

Dn log. (« + bx) =

(- l)"n! 6“

(a bx) n+l

(- l)»l-3 5 •
• (2n - 1)

2"(o + 6*) <»»+»/*

(- l)"(n — 1)!&“

(a + bx)*
’

(- l)—'2(n- l)!cos[»sra-‘(-^=l==)]

<*> O' log. (1 + «') 1

( , +

(j) un- . -
(- PIT si,f.^(‘ Uw

(l + **)»'* L VvT+TVJ

01

(k) dh log, r(*)

(i + *>)»/*

(- l)»(n- 1)!
. T .

sin n sin
-

(i + L

<- i)"n!
. r,

i
— sin (n + 1)
(i + **)<«+»/* L

(-l)»(n-2)!
r
[* + e(n -

x*

‘[(“ +1)si°' ,

(vfW)}

[x + 0(n- 1)], 0 <B < 1,

* > 0, n > 1.
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For an extensive investigation of nth derivatives the reader is re-

ferred to Steffensen’s Interpolation, pp. 231-241.

EXAMPLES ON CHAPTER I

1.

Round off the following numbers correctly to four significant

figures :

63.8543, 93487, 0.0063945, 83615, 363042, 0.090038, 53908.

2.

‘A carpenter measures a 10-foot beam to the nearest eighth of

and inch, and a machinist measures a |-inch bolt to the nearest thou-

sandth of an inch. Which measurement is the more accurate?

3. The following numbers are all approximate and are correct as

far as their iast digits only. Find their sum.

136.421, 28.3, 321, 68.243, 17.482.

4. Find the sum of the following approximate numbers, each being

correct only to the number of significant figures given:

0.15625, 86.43, 191.6, 432.0X10, 930.42.

5. The numbers 48.392 and 6852.4 are both approximate and true

only to their last digits. Find their difference and state how many
figures in the result are trustworthy.

6. Find the value of \/10 — tt correct to five significant figures.

7. The theoretical horsepower available in a stream is given by the

formula

H.P.
whQ

550

where h = head in feet, Q = discharge in cubic feet per second, and w =
weight of a cubic foot of water. The weight of fresh water varies from
62.3 to 62.5 lbs. per cubic foot, depending upon its temperature and
purity.

If the measured values of Q and h are Q = 463 cu. ft./sec. and
h = 16.42 ft., find the H.P. of the stream and state how many figures of

the result are reliable.

8.

The velocity of water flowing in long pipes is given by the formula

a /2Jhd /
v = y —jj- ft./sec.,

where g = acceleration of gravity = 32.2 ft./sec.2 ,

h = head in feet,

d = diameter of pipe in feet,

/ = length of pipe in feet,

/= coefficient of pipe friction.
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In this problem the factor / is the most uncertain. It varies from
0.01 to 0.05 and is usually somewhere between 0.02 and 0.03. Assuming
that/ is within the limits 0.02 and 0.03 and taking

g = 32.2,

A= 112 feet,

d = \ foot,

/= 1865 feet,

find v and state how many figures of the result are reliable.

9.

The velocity of water in a short pipe is given by the formula

v =
2gh

1.5 + fl/i

where g, h, /, l, and d have the same meanings as in the preceding

example. Taking 1-15 feet and the other data the same as in Ex. 8,

find v and state how many figures of the result are trustworthy.

10.

The acceleration of gravity at any point on the earth’s surface

is given by the formula

g = 32.1721 - 0.08211 cos 21 - 0.000003ff,

where II= altitude in feet above sea level, and L = latitude of the place.

It thus appears that the value of g is not 32, nor 32.2, nor even 32.17.

Compute the kinetic energy of a lQO-pound projectile moving with a

velocity of 2000 feet per second by taking g equal to 32, 32.2, and 32.17

in succession and note the extent to which the results disagree after

the first two or three figures.

11.

The approximate latitude of a place can be easily found by

measuring the altitude h of Polaris at a known time t and using the

formula

L = h — p cos /,

whei e p = polar distance = 90° — declination

.

Treating p as a constant and equal to 1°07'30", and taking h =41°25' f

f= 0°38'42", find the error in L due to errors of 1' in A and 5* in t.

12. In the preceding example find the allowable errors in h and t in

order that the error in L shall not exceed 1', using the same values of

p, t, and h as before.

13. The distance between any two points Pi and P» on the earth’s

surface is given by the formula

cos D = sin L\ sin Lt + cos L\ cos Li cos (Xj — Xj),

where Lit Lt and Xi, X2 denote the respective latitudes and longitudes
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of the two places. Find the allowable errors in Lx, L%, Xi, X* in order

that the error in D shall not exceed 1' (a geographical mile), taking

L x = 36°10'JV, Lx = 580
43'tf, X, - 82°15'IF, X, - 12S*4XW.

14. The fundamental equations of practical astronomy are:

(1) sin A = sin 5 sin L + cos 6 cos L cos t,

(2) cos A cos A — — sin 8 cos L + cos i sin L cos t,

(3) cos Asin A = cos 8 sin t,

where 8 denotes declination, t hour angle, A altitude, and A azimuth

of a celestial body and L denotes the latitude of a place on the earth.

The declination 8 is always accurately known and may therefore be

considered free from error.

Differentiating (1) by considering 8 constant and A, L, t as variables,

we have

cos A dA = sin 8 cos L dZ.— cos 8 sin L cost dL— cos 8 cos L sin t dt.

Replacing cos 8 sin L cos t and cos 8 sin t on the right by their values

from (2) and (3), respectively, we get

dh = — (cos A dL Ar sin A cos L dt)

.

Solving for dL,

(4) dL = — (sec A dh + tan A cos L dt)

.

This equation shows that the numerical value of dL is least when A
is near 0° or 180°, that is, when the body is near the meridian. If A
should be near 90°, that is, if the body should be near the prime

vertical, the error in L might be enormous. Hence when determining

latitude the observed body should be as near the meridian as possible.

Using equation (4), compute dL when dA = l', dt = 10* L = 40°,

4=10°, and 4=80°.
15. Using the formula dL— — (sec AdhArtaa A cos Ldt), find the

allowable errors in t and A in order that the error in L may not exceed
1' when L =40° and (a) A = 10° and (b) A = 75°.

16. From the relation

cos AdA = (sin 8 cos L — cos 8 sin L cos t)dL — cos 8 cos L sin tdt

we find by means of (2) and (3) of Ex. 14
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This equation shows that dt is least numerically when A is near 90°,

that is, when the observed body is near the prime vertical ; it also shows

that when the body is on or near the prime vertical an error in the

assumed latitude has practically no effect on the error in t.

Compute dt when dh — 1', dL = 5', L = 40°, A = 10°, and A =80°.

17. Using the formula for dt in the preceding example, find the

allowable errors in L and h in order that dt may not exceed 3s
,
taking

L = 40°, A = 10°, and A = 80°.

18. Using the formula of Ex. 16, take dt = 3 s
,
dh = 1', and find dL

for A = 10° and 4=80°.
19. In the equation

x = a sin ( kt + a)

suppose a
,
k, and a are subject to the errors Aa, Ak

,
Aa, respectively.

Compute Ax and see which of the errors Aa, Ak, Aa is the most potent

in causing an error in x .

20. Find the value of

I =
f 08

Jo

sin x
dx

x

to five decimal places and estimate the accuracy of your result.

21.

Compute the value of the integral

/ - VT 0.162 sin 2
<t>d<f>

by first expanding the integrand by the binomial theorem and then

integrating the result term by term. Estimate the accuracy of your

result.



CHAPTER II

INTERPOLATION

DIFFERENCES. NEWTON’S FORMULAS OF INTERPOLATION

11. Introduction. Interpolation has been defined as the art of reading

between the lines of a table, and in elementary mathematics the term

usually denotes the process of computing intermediate values of a

function from a set of given or tabular values of that function. The
general problem of interpolation, however, is much larger than this.

In higher mathematics we frequently have to deal with functions whose
analytical form is either totally unknown or else is of such a nature

(complicated or otherwise) that the function can not easily be sub-

jected to such operations as may be required. In either case it is

desirable to replace the given function by another which can be more
readily handled. This operation of replacing or representing a given

function by a simpler one constitutes interpolation in the broad sense

of the term.

The general problem of interpolation consists, then, in representing a

function, known or unknown, in a form chosen in advance, with the

aid of given values which this function takes for definite values of the

independent variable.

Thus, let y =/(x) be a function given by the values yo, yu >2 ,

•
• y»

which it takes for the values x Q} xu x2 ,
• xn of the independent

variable x
,
and let 0 (jc) denote an arbitrary simpler function so con-

structed that it takes the same values as f(x) for the values x0t xu
x2f

• • xn . Then if f(x) is replaced by <t>(x) over a given interval, the

process constitutes interpolation, and the function <f>(x) is a formula of

interpolation.

The function <f>(x) can take a variety of forms. When <f>(x) is a

polynomial, the process of representing f(x) by <J>(x) is called parabolic

or polynomial interpolation; and when <f>W is a finite trigonometric

series, the process is trigonometric interpolation. In like manner, 0(x)

may be a series of exponential functions, Legendre polynomials, Bessel

functions, etc. In practical problems we always choose for 0(x) the

simplest function which will represent the given function over the in-

terval in question. Since polynomials are the simplest functions, we
usually take a polynomial for 0(x), and nearly all the standard formulas

38
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of interpolation are polynomial formulas. In case the given function is

known to be periodic, however, it is better to represent it by a trigono-

metric series.

The justification for replacing a given function by a polynomial or

by a trigonometric series rests on two remarkable theorems proved by
Weierstrass* in 1885. These theorems may be stated as follows:

I. Every function which is continuous in an interval (a, b) can be

represented in that interval, to any desired degree of accuracy, by a

polynomial; that is, it is possible to find a polynomial P{x) such that

|/’(x) — P(x)
|

<e for every value of x in the interval (o, b)
t
where € is

any preassigned positive quantity.

II. Every continuous function of period 2ir can be represented by a

finite trigonometric series of the form

g(x) = a 0 + a\ sin x + a 2 sin 2x + • + an sin nx

+ bi cos x + b 2 cos 2x + • + bn cos nx;

or
|
f(x)—g(x)

|

<6 for all values of x in the interval considered, where

5 represents any preassigned positive quantity.

X

Geometrically these theorems mean that, having drawn the graphs

of y =/(x), y =/(*) +e, and y =/(x) -e, it is possible to find a polynomial

or a finite trigonometric series whose graph remains within the region

bounded by y =/(*)+« and y =/(*)-€ for all values of x between a and

6, however small € may be. (See Fig. 1 .) These theorems mean
,
therefore,

* Uber die analytische Darstellbarkcit sogenanntcr* willkUrlicher Funktionen einer

tet'h n Verflnderlichen (Sitzungsberichte der Kgl. Ak. der Wisw., 1885).
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that the given function may be replaced by a polynomial or by a finite

trigonometric series to any desired degree of accuracy.

12. Differences. If yo, yu yu • •
• y» denote a set of values of any

function y =/(*), then yi-yo, yt-yi, y»-y*, • - • y»-y»-

1

are called the

first differences of the function y. Denoting these differences by A

y

0 ,

Ayj, Ay2 , etc., we have Ay0=yi-y0 , Ayi=y2 -yi, • • • AyB_l =yB -yB_i,

Ay»=yB+i-yn.

The differences of these first differences are called second differences.

Denoting them by A2
y0 ,

A2
yi, etc., we have

A2
y0 = Ayi - Ay0 = yt — 2yx + y0,

A2
yi = Aya — Ayi = y3 - 2y2 -f yu

etc.

In like manner, the third differences are

A*y0 = A2
yx - A2

y0 = y3 - 3ys + 3yi — y0,

A*yi = A2
ys — A 2

y! = y4 - 3y3 + 3y2 - y,,

etc.

The following difference table shows how the differences of all orders

are formed

:

X y Ay A*y A*y A*y Aly A*y A7
y A8y

Xo yo

Ay»

Xi yi

Ayi

A*y*

A*y»

x% yt

Ay2

A*yi

A'yi

A*y0

A‘yo

Xi yt

Ay3

A*yi

A’yi

A4yi

A‘yi

A*y.

AT
y0

Xi y* A*yi A4
yi A'yi A'y.

Ay« A'yi A‘yi A»y,

Xi yt

Ay»

A*y<

A*yi

A 4
y,

A‘y,

A*yj

Xi yt

Ay(

A'y.

A*y3

A4
y«

Xj yt

Ayr

A*y.

X* yt

Table*!. Diagonal Difference Table.
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This table is called a diagonal difference table. The majority of

difference tables are of this kind, but for many purposes a more com-

pact table, called a horizontal difference table, is preferable. In the

horizontal difference tables the differences of different order are denoted

by subscripts instead of exponents. Using the notation for horizontal

differences, we can rewrite the preceding difference table in the hori-

zontal form as follows:

X y Axy A,y A,y A4y Aty Aty aiy Aty

Xq yo

X\ yi Aiyi

*1 yi Aiy» A2yi

x» y% Aiy, Aj^j A,y,

Xa y4 Aiyi Ajy* A«y« Aiyt

xa y\ Atyt Aay» Aiy» A«yi A»y»

Xi y» Aiy, Ajy. A,y« A<y« A.y* A*yt

*7 yi Aiy7 Aiin Asyi A<y7 Aty, Atyi A7yi

Xa y^ Aiy, Aty» A,y8 Aiyt A,yt Aey* A7y% Ajyi

Table 2. Horizontal Difference Table.

•

In order to see the relation between horizontal and diagonal differ-

ences of the same order, we give in Tables 3 and 4 the differences of

both kinds in terms of the y’s.

Inspection of these tables shows that the top diagonal line is the

same in both, but that the bottom upwardly inclined diagonal in Table 3

is the same as the bottom horizontal line in Table 4. Also, from Table 3

we have, for example,

A‘yi = y« - 3yj + 3yj - yi.

Likewise, from Table 4 we have

Hence
Ajy4 = y4 - 3ya + 3ys - yi.

A*yi = A 3y4 .

A glance at Tables 3 and 4 will show that the general relation between

the A’s affected with exponents and those affected with subscripts is

or

Amy* = Amy*+m (going forward from yk),

Amy„ = Amy„_* (going backward from y„),

where m denotes the order of differences and k and n the number of

the tabulated value.
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Horizontal

Differences.
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13. Effect of an Error in a Tabular Value. Let y0 , yu yt,
•

• y% be

the true values of a function, and suppose the value y% to be affected

with an error c, so that its erroneous value is ys+t. Then the succes-

sive differences of the y’s are as shown below

:

y Ay A A*y A4y

y»

Ay.

y\ A*y«

Ay» A 3
3'o

y% A‘yi A4
y»

Ay. A*yi

y« A*y» A4yi+«
Ayi A 3>2+€

y4 A*y.+« A 43’j— 4c

Ay.+e A*y*— 3c

yi+« A*y4— 2 c A 4>*-f6c

A>4 -€ A'y4+3€
y« A*y»+« A 4?*—4c

Ay% A*y,-«

yi A’y. A*y»+«
Ay7 A*>*

y« A’yr A*y.

A»y7

y» A*y.

A>9

yio

Table 5. Showing the effect of an error.

This table shows that the effect of an error increases with the successive

differences, that the coefficients of the e’s are the binomial coefficients

with alternating signs, and that the algebraic sum of the errors in any

difference column is zero . It shows also that the maximum error in the

differences is in the same horizontal line as the erroneous tabular value .

The following table shows the effect of an error in a horizontal

difference table

:

y Aiy Aty A8y A«y

yo

yi Ai>’i

ya Ai>j Aj>2

yi Ai>* Ai>i As>i

y« Aiy4 Aa>4 a3v4 Ai>4

yt+e Aiy£ +e Atys-h* A»y.+« Aofc+f

y Aj — € Ajy. — 2t A.y«-3< A<y«—4c

Oh Aiyi A.y7+« Ai>7 4'3€ A.yj+6*

ya Aiy» As>8 Aj>s-€ Ao^a—4e

y» A»y. As>» A4>»-|-€

>10 Aiyu Ai>io %>10 A4.Vif

Table 6.
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Here, again, the effect of the error is the same as in the preceding

table, but in this table the first erroneous difference of any order is in the

same horizontal line as the erroneous tabular value.

The law according to which an error is propagated in a difference

table enables us to trace such an error to its source and correct it. As
an illustration of the process of detecting and correcting an error in a

tabulated function, let us consider the following table:*

X y Aiy day biy A €

0.10 0.09983

0.15 0.14944 4961

0.19867 4923 - 38

Bfifl 0.24740 4873 - 50 -1?

0.30 0.29552 4812 - 61 -11 1

0.35 0.34290 4738 - 74 - 1

0.40 0.38945 4655 - 83 4 €

0.45 0.43497 4552 — 103 -11 -46

0.50 0.47943 4446 -106 17 66

0.55 0.52269 4326 -120 -14 -11 —4c
0.60 0.56464 4195 -131 -11 3 6

0.65 0.60519 4055 -140 i *

2

0.70 0.64422 3903 -152 Kfl - 3

Here the third differences are quite irregular near the middle of the

column, and the fourth differences are still more irregular. The irregu-

larity begins in each column on the horizontal line corresponding to

* = 0.40.

Since the algebraic sum of the fourth differences is 1, the average

value of the fourth differences is only about 0.1 of a unit in the fifth

decimal place. Hence the fourth differences found in this example are

mostly accumulated errors. Referring now to Table 6, we have

— 4« = — 11, 6t = 17, etc.

Hence, c = 3 to the nearest unit. The true value of y corresponding to

*= 0.40 is therefore 0.38945 — 0.00003 = 0.38942, since (y*+e)—e=y*.
The columns of differences can now be corrected, and it will be found

that the third differences are practically constant.

If several tabular values of the function are affected with errors the

* Note. When writing numerical difference tables, or when substituting numerical

differences in formulas, it is customary to omit the zeros between the decimal point and
the first significant figure to the right of it; in other words, the differences are expressed

in units of the last figure retained. Thus, instead of writing —0.00038 as the first number
in the column A,y we write simply —38. This practice will be followed throughout this

book, except in a few instances where the zeros are written for the sake of clearness.
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successve differences of the function will become irregular, but it is

not an easy matter to determine the sources and magnitudes of the

separate errors.

In the case where each of the tabulated y’s is affected with an error

of magnitude e, each of the third differences is affected with an error

3ei_i+3€*_2— e*_a, each of the fourth differences with an error

tic— 4«*_i+6e*_i— 4e*_, +«*_., etc., as is evident from Tables 3 and 4. In

practical problems the tabulated values of the function y are obtained

by measurement or by computation. They are thus liable to be affected

with errors of measurement or with errors due to rounding off the

computed results to the given number of figures. In either case these

errors would be magnified in the process of taking differences and they

alone would be sufficient to cause the higher differences to become

irregular.*

14. Differences of a Polynomial. Let us now compute the successive

differences of a polynomial of the nth degree. We have

(14: 1) y = fix) = ax" + bxn~ l + cxn~2 + • •
• + kx + l.

(14: 2) .'. y +*Ay = a{x + h) n + b[x + A) n_1 + c{x + A)"
-
* + • • •

+ k(x +h)+l,

where h=Ax.
Subtracting (14:1) from (14:2), we get

Ay = a[(x +~h) n — xn
] + A[(x + A)*

-1 — xB_1 ]

+ c[(x + A)"
-* — xB~2

] + • •
• + AA.

Expanding the quantities (x+h) n
,
(x+A)"-1

, etc. by the binomial

theorem, we have

f »(w — 1) ti(n — 1)(» — 2)
Ay = a X" + nhxn~ l

H A2*"-2 H A*x" *

L 2 3

.

*i r (« - 1)(» - 2)

+ • • • — *n
J
+ A lx"-1 + (n — l)AxB-2 H A2**

-*

1 r (n — 2)(»— 3’

+ x"-1 + clxB"2 + (» - 2) Ax-"* + A2x"-«

+ + ... + AA,

or

* For an exhaustive discussion of errors in the tabular values of a function, see Rice's

Theory and Practice of Interpolation, pages 7-15 and 46-62, Also O. Biermann's Vorlc~

sungen iiber Matkematische N&herungsmethoden
, p. 136.
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r n(n — 1) "I

Ay = anhxn~ l + I ah 2 h b(n —
1)AJ xn~ 2

f n(n— 1)(»— 2) (»— l)(n— 2) “]

+ [ah*- - + bh*± -+ ch(n-2)\x"-*+ •

Now if Ax ( = A) is constant, the bracketed coefficients of xn“ 2
,
xn”3

, etc.

are constants, so that we may replace them by the single constant

coefficients b ', c
f

,
etc. Hence we have

(14: 3\ Ay = anhxn~ l + b
fxn~ 2 + c'xn

“ 3 + •
• + k'x +

The first difference of a polynomial of the «th degree is thus another

polynomial of degree n — 1 .

To find the second difference we give x an increment Ax = h in (14:3)

and therefore have

(14: 4) Ay + A(Ay) = anh{x + h) n~ l + b\x + A) n ~ 2

+ c\x + h)
n-s + •

• + k\x + h) +
Subtracting (14:3) from (14:4), we get

A(Ay) = A 2
y = anh[(x + h) n~ l — xn~ l

]

+ b'[(x + h)
n~ 2 — xn~ 2

] + c'[(x + A) n~ 3 — xn_s ] + •
• + h'h.

Expanding (je+A) n_l
,
(ar+A) n~ 2

,
etc. by the binomial theorem and re-

placing the constant coefficients of xn~3
,
xn~4

,
etc. by a single letter as

before, we have

A2
y = an(n - 1)h2x*-2 + b"

x

n~* + c" x*~K h k"x + Z"

.

The second difference is thus a polynomial of degree n — 2.

By continuing the calculation in this manner we arrive at a poly-

nomial of zero degree for the nth difference; that is,

An
y = a[n{n — 1)(n — 2) •

• 1 ]hnxn
~n = att\hnx0 = ahnn \

.

The nth difference is therefore constant, and all higher differences are

zero.

The reader should bear in mind that this result is true only when h

is a constant, that is, when the yalues of x are in arithmetic progression.

The proposition which we have just proved may be stated as follows:

The nth differences of a polynomial of the nth degree are constant when
the values of the independent variable are taken in arithmetic progression

,

that is, at equal intervals apart.

The converse of this proposition is also true, namely:
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If the nth differences of a tabulated function are constant when the values

of the independent variable are taken in arithmetic progression, thefunction

is a polynomial of degree n*
This second proposition enables us to replace any function by a

polynomial if its differences of some order become constant or nearly so.

Thus, the function tabulated in Art. 13 can be represented by a poly-

nomial of the third degree, since the corrected third differences are

approximately constant.

15. Newton's Formula for Forward Interpolation. Our next problem

is to find suitable polynomials for replacing any given function over a

given interval. Let y-f[x) denote a function which takes the values

yo, yu yi,
• •

• y» for the equidistant values Xo, Xi, x2 ,
• • • xn of the

independent variable x, and let <f>(x) denote a polynomial of the »th

degree. This polynomial may be written in the form

(15: 1) <f>(x) = ao + ai(* — x0) + a2(x — x0)(x — Xi)

+ a 3(x — *o)(* — *i)(* — x2)

+ at(x — x0)(x — *i)(a; - x2)(x - x3)

+ •
• + an(x - Xo)(x - xi)(z - x^ (x —

We shall now determine the coefficients a 0 , o», a2 , a„ so as to make
<f»(*o)=yo, <M*i) = yi. <H*j) =yi. • «f>(x„) =y».*

Substituting in (15:1) the successive values x0 , Xi, xt ,
- • • xn for x,

at the same time putting <t>(x0)=yo, <f>(xi) = Vi, etc., and remembering

that Xi—xo = h, x3—x3
— 2h, etc., we have

yo = flo» or ao = yo-

yi = ao + fli(*i — *a) = yo + a v h.

_ yi — yo _ Ayo
a ,

- —
yi — yo

y* = a0 + «i(*« - *o) + - *o)(*2 - x x) = y0 d (2h)

+ at(2h)(h)

.

ys - 2yi + y0 AJ
y0

. j2

2h* 2h8

y» = «o + ai(*8 - *0) + a 2(xt - *0)(*s - *i)

+ a»(x3 — x0)(x3 - xi)(*» — xt)

- y, + ——~—(3h) +
V- - 2

/' + —(3h)(2h) + a,(3A)(2A)(A).

* For the proof of this proposition see Rice's Theoify and Practice of Interpolation,

p. 24.
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aj

y* — 3yt + 3yi — y0 A*y0

6A* 3!A*

y* = 00+ 0l(*4-*o)+ 02(*4— *o)(*4-*l)+ Oj(*4“ *o)(*4— *l)(*4— *»)

+ fl4(*4 - *o)(*4 ~ *l)(*4 - *2)(*4 — X») ’

, ,

y* - 2yi + yo/JlfW,, x
** yo H :—(4A) H — (4A) (3A)

+

A 2 A*

y* - 3y4 + 3yi - y0

6A*
(4A)(3A)(2A) + a«(4A)(3A)(2A)(A)

.

04 =
y4 — 4ya + 6y2 - 4yi + y0 A 4

y0

4!A4 4!A4

By continuing this method of calculating the coefficients we shall find

that '

,

Os =
A*y0

04 =
A‘y0

o„ =
A n

yo (

S!AB 6 \h* nit»

Substituting these values of ao, au • • • an in (15:1), we get

A Vo A 2Vo
(IS: 2) 4>(x) =* y0 +—(* - *o) +—-(* - *<>)(* - xj

A 2A2

+ 777k* - *o)(* - *i)(* - *2)
3!hr

+ 7777(* “ *o)(* “ *i)(* - *2)(* -*») + •••
4 !«4

An
yo

+——(* - *o)(* — *l)(* —**)•••(*“
»!A"

This is Newton’6 formula for forward interpolation, written in terms

of x.

The formula can be simplified by a change of variable. Let us first

write (15:2) in the following equivalent form:

, . (x — *oY A*yo/* — *oV* — *i\
us: 2.) -*+**(—) +—(-rrnn

A*yo/* — xq\/x — xi\/x — xt\
+ ~3!\ A A A A A /

A 4
y 0 /« - *oV* “ *iV* ” **V* “ **\

.+
~ir{~T~Arr~k~rk~r)

+ ' • •
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Now put
X — Xt

u, or x = #q + hu.

Then since xi=xa+h, xt =xt+2k, etc., we have

x — xi x — (*0 + h) x — xt — A x — xt

h

X — Xt

h

h h

x — (x0 + 2 h) x — xt

h h

h
= M- 1

' x — Xn-i x — [*o + (« — 1)A] x — xt (n — 1)A

h h
=

h h

k .
=«-(»- 1) = » - » + 1

.

f

Substituting in (15:2a) these values of (x—xo)/h r (x—xi)/h 9 etc., we get

u(u — 1)
(I) <f>M = + hu) = g(u) = y0 + uAy0 H — A*y0

u(u - 1)(u - 2) u(u - 1)(u - 2)(* - 3)
H : A*yo H A4

y0

3! 4!

+
u(u — 1)(u — 2) • •

• (u — n + 1)

n!
•Awy0 .

This is the form in which Newton's formula for forward interpolation

is usually written. We shall refer to it hereafter as Newton’s formula (I).

It will be observed that the coefficients of the A’s are the binomial

coefficients.

The reason for the name “forward” interpolation formula lies in the

fact that the formula contains values of the tabulated function from yo

onward to the right (forward from yo) and none to the left of this value.

Because of this fact this formula is used mainly for interpolating the

values of y near the beginning of a set of tabular values and for extra-

polating values of y a short distance backward (to the left) from yo*

The starting point yo may be any tabular value, but then the formula

will contain only those values of y which come after the value chosen as

starting point.

16. Newton’s Formula for Backward Interpolation. The formulas of

the preceding section can not be used for interpolating a value of y near

the end of the tabular values. To derive a formula for this case we write

the polynomial </>(jx) in the following form:
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(16: 1) $(*) - 0o + <»i(* — *») + — x„)(* — xn-i)

+ a»(x - xn)(x - xB-i)(x -

+ fl4(x — X,)(x — Xn_l)(x - Xn-t)(x — Xn-l) +
+ an(x - xn)(x - X„_i) (x — xj .

Then we determine the coefficients at, ai, at, • • a* so as to make
$(*»)= y», <A(x„_i) =y„_i, etc. Substituting in (16:1) the values *»,

Xn-i, etc. for * and at the same time putting 4>(xn) =yB1 4>(xn-i) =yn-i,

etc., we have

yn - «o, or at ~ yn .

y«-i = '<*o + - *„) = yn + ai(- A).

yn - yn-

1

Aiy.

yn-i - at + a x(x„_2 - Xn) + at(xn-i - x„)(zn_2 - *„_,)

= yn + - I--y?
~ 1

(- 2 A) + a,(- 2A)(— A).,
A

_ y, - 2y„_i + y,_2 _ A 2y„
fl* "

2

A

2 ” 1a2

" ’

By continuing the calculation of the coefficients in this manner we shall

find

Aay» A4y»
at = y aa =

3!A* 4!A4
An =

Any,

»!A*

Substituting these values of at, ax , a2 , etc. in (16:1), we have

AlVm AsVn
(16: 2) *(x) = yB + —y (x - *«) + -jy (x - x„) (* - x._0

+ yy(* - x„)(x - xn-i)(x - x„-2)

A4y„
+ —T--(X ~ *»)(X - XB_i)(x - Xn-*)(X - Sn-j) +

4!A4

+ “77"(* “ *»)(* “ *«-0 •••(*- xi).
»!A*

e

This is Newton’s formula for backward interpolation, written in terms
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of x. It can be simplified by making a change of variable, as was done

in Art. IS.

Let us first write (16:2) in the equivalent form

. &ty*/x - *»V* ~ x*-j\/x ~ *«-*\+irv
-
r~A r~

a

r~

)

/*-
*»Y

x ~ X-«V* ~ *"-JV* -

4! \ A A” A A T~A A /
+

A.y./x -
*„Y

X ~ x«-i\
(
x ~ XA

n\ \ A A A /
'

V A /'

+

+

Now put
* - *»

m = > or x = xn + hu.

Then since xn ..i = xn— h, xn-t = xH— 2h, etc., we have

* — X«_i
" x — (x» — A) X — xH + A X — x» A

A A AAA’
* - *-(*«- 2A) x — x. 2A

= u + 2,

A A A A

s - Ji X - [*»-(«- 1)A]

A
=

A

(» - 1)A

A
« + «—!.

Substituting in (16:2a) these values of (x-x»)/A, (x- x„_i)/A, etc. ,we get

«(« + 1)

(II) *(x) = <t>(xn + hu) « j/(u) ** y* + uAiyn H A»yn

u(u + 1)(« + 2) ,
«(« 4- 1)(« + 2)(« + 3)

+ A tyn H
— **y*+ *

3!

«(« + 1)(« + 2) •••(« + » — !).
+ j

Any».
Hi

This is the form in which Newton’s formula for backward interpola-

tion is usually written. We shall refer to this formula hereafter as

Newton’s formula (II). It is to be observed that this formula employs

horizontal differences, whereas the formula.for forward interpolation

employs diagonal differences.
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(II) is called the formula for "backward” interpolation because it

contains values of the tabulated function for yn backward to the left

and none to the right of y„. This formula is used mainly for inter-

polating values of y near the end of a set of tabular values, and also

for extrapolating values of y a short distance ahead (to the right) of y'n .

We shall now illustrate the use of Newton’s formulas by working some
examples.

Example 1. Find logioTr, having given

log 3.141=0.4970679364,

log 3.142 = 0.4972061807,

log 3.143 = 0.4973443810,

log 3.144 = 0.4974825374,

log 3.145 = 0.4976206498.

Solution. We first form the table of differences, as shown below:

X y = log x Ay A*y A3y

3.141 0.4970679364

1382443

3.142 0.4972061807

1382003

-440 .

1

3.143 0.4973443810

1381564

-439
-1

3.144 0.4974825374

1381124

-440

3.145 0.4976206498

Here x = ir = 3. 141 5926536, *„ = 3.141, h = 0.001. Hence

x-xo 3.1415926536 - 3.141
u = = = 0.5926536,

h 0.001

« - 1 = - 0.4073464, etc.

Substituting these values in (I), Art. 15, we get

logio t = 0.4970679364 + 0.5926536(1382443)

0,5926536(— 0.4073464)(- 440)

2

= 0.4970679364 + 0.0000819310 + 0.0000000053

= 0.4971498727 .

This result is correct to its last figure.

Example 2. Using the tabular values of the preceding example, find

logio 3.140.
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Solution. Here * = = 3.140, *0 = 3.141, A = 0.001. Hence

x — xq *_j — xo —h

u — 1 = — 2, etc

.

(_ i)(_ 2) .

logio 3.140 = 0.4970679364 + (- 1)(1382443) + — -(- 440)
2

= 0.4970679364 - 0.0001382443 - 0.0000000440

= 0. 4969296481 .

This result is also correct to its last figure.

Note. The process of computing the value of a function outside the

range of given values, as in the example above, is called extrapolation.

It should be used with caution; but if the function is known to run

smoothly near the ends of the range of given values, and if h is taken as

small as it should be, we are usually safe in extrapolating for a distance

h outside the range of given values.

Example 3. The hourly declination of the moon for January 1, 1918'

is given in the following table. Find the declination at 3h 35m IS*.

Hour Declination Ai A, Aa

0 8° 29' 53*.

7

1 8 18 19 .4 -ir 34".

3

2 8 6 43 .5 -li 35 .9 — 1
r
.6

3 7 55 6 .1 -li 37 .4 -1 .5 0M
4 7 43 27 .2 -li 38 .9 -1 .5 0 .0

Solution. Since the desired declination is near the end of the values

given we use Newton’s formula (II), and we therefore form a horizontal

difference table, as shown above. Denoting the time in hours by t, we
have /„=4, / = 3h 35m 15*, A = 1. Hence

t - t« - 0h 24" 45* _
- 1485*

~~h~
“

I* 3600*

.*.«+!- 0.6431.

0.3569.

Substituting these values in (II) and denoting the required declination

by 5, we get
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S - 7°43/
27// .2+ (- 0.3569)(- 11'38".9) + (°~ 6

.

431^~°- 3569)
(- 1".5)

- 7°43'27".2 + 4'9".4 + 0".2

- 7° 47' 36". 8.

Example 4. Using the data of the preceding problem, find the de-

clination of the moon at t — 5h .

Solution. Here t= tn+\ — 5, tn — 4.

tn+l tn h
:.u — = 1, #+ 1

h h

Substituting in (II), we have

«-+i = 7° 43' 27". 2 + (1)(- 11' 38". 9) +
(D(2)

(- 1".S)

7° 31' 46". 8.

The true value, as given in the American Ephemeris ?nd Nautical

Almanac, is 7° 31' 46 ".9, the error in the extrapolated value thus being

only 0".l.

EXAMPLES ON CHAPTER H

1. Find and correct by means of differences the error in the following

table:

48440

50898

53355

55800

58268

60724

63179

65634

68089.

2. Correct the error in this table:

19° 12' 22".

4

19 25 54 .7

19 39 7 .3

19 51 53 .8

20 4 31 .9

. 20 16 43 .5

20 28 34 .3.
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3. Find logio sin 37' 23", given

log sin 37' *=8.0319195 — 10
* “ 38' = 8. 0435009 -10
“ “ 39' = 8. 0547814-10
“ “ 40' = 8. 0657763 -10
“ “ 41 ' = 8. 0764997 -10
“ “ 42 ' = 8. 0869646-10
“ “ 43' = 8. 0971832 — 10.

4. The following table gives the longitude of the moon at twelve-hour

intervals for the first four days of April, 1918. Find the moon’s longitude

at 8:50 P.M. on April 2, the day beginning at noon.

Apr. 1 0 244° 44' 20".

5

“ 1 12 250 57 35 .7

“ 2 0 257 14 22 .1

“ 2 12 263 35 8 .6

“ 3 0 270 0 24 .6

“ 3 12 276 30 39 .6

“ 4 0 283 6 22 .1.
-w

5. Using the data of Example 3, find log sin 42' 13".

6. Using the data of Example 4, find the moon’s longitude at 8:43

p.m., Apr. 3.



CHAPTER III

INTERPOLATION

CENTRAL-DIFFERENCE FORMULAS

17. Introduction. Newton’s formulas (I) and (II) are fundamental

and are applicable to nearly all cases of interpolation, but in general

they do not converge as rapidly as another class of formulas called

central-difference formulas. These latter formulas employ differences

taken as nearly as possible from a horizontal line through a diagonal

difference table, and a glance at Table 3 shows that these differences

contairt values of the function both preceding and following the value

through which the horizontal line is drawn. The central-difference

formulas are therefore particularly suited for interpolating values of

the function near the middle of a tabulated set.

The most important central-difference formulas are the two known as

Stirling’s formula and Bessel’s formula, respectively. They can be de-

rived in several ways, but are most simply derived by an algebraic

transformation of Newton’s formula (I).

18. Stirling’s Interpolation Formula. To derive Stirling’s formula we
first write a diagonal difference table and mark for special Consideration

the tabular value y 9 and the differences lying as near as possible to the

horizontal line through yo- These quantities are printed in heavy type

in the table given below.

y Ay A*y A*y A Ay Aly A*y A 1y A*y

y-*

Ay-i

y-t

Ay_*

A*y_«

A*y-*

y-*

Ay-i

A’y_j

A*y_i

Aly-4

A*y-4

y-i A*y-*

A*y_,

A*y_*

Ay.,
A‘y-4

Ay_4

Ay»
A^y-i

A^_i
Ay_»

Ay_,
A^y_»

A^_,
A^_,

y\

Ay

i

A*y»

A*y»

A‘y-i

A*y_i

A*y_»

A’y-j

A*y_«

y*

Ayt

A*yi

A*yi

A4
y«

A*y#

A*y_i

yi

Ay*

A*y»

A*y»

A*y,

y4

Ay«

A*y»

y*

Table 7.

56
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Newton's formula (I), when setting out from y0 , is

«(# — 1) *(« — 1)(« — 2)
{A) 3 yt + uAya H AS H A*y0

«(« - 1)(« - 2)(« - 3)+
Jj

«(« - 1)(« - 2)(« - 3)(u - 4)+ — A 8
y0 + • •

•
,

which may be written in the form

(B) y = yo + CjAy0 + CjA2
yo + C»AS + C«AS "4* C»AS “i“

where the C’s denote the binomial coefficients.

Let us now put

Ay_i + Ay0

(a) mi = >
/t ,

A*y_j + A*y_i
W wi 3 =

to

etc.

»»5

4‘y_, -f A‘y_2

,

2
(<0 w 7

AT
y_4 + AT

y_j~
" 2

~~

These m’s are thus the arithmetic means of the odd differences immedi-

ately above and below the horizontal line through y<>.

Our immediate object now is to express Ay0l AS, AS, etc. in terms

of the m’s and the even differences lying on the horizontal line through

yo. This will be done by a process of elimination by working from

Ay0 , AS, etc. diagonally upward to the right until the quantities in the

horizontal line are reached. As an aid to this we shall underline the

even differences A*y_i> A 4
y_J. A‘y_j, A*y_« wherever they occur in the

algebraic work which follows, the purpose of the underlining being to

call attention to the fact that the underlined quantities are not to be

eliminated.

From the definition of differences we have

A*y_i = Ayo — Ay_i.

Ayo =* A2
y_i + Ay_i.

But Ay_i<=2f»i—Ayo, from (a).

.*. Ay0 = A*y_i + 2»i — Ay(

(18: 1)

•

Ayo 3 »it
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To find the value of A2
y0 in terms of the desired quantities we have

A3
y_i = A2

y0 - A2
y_i,

(e) or A2
y0 * A2

y_i + A*y_i.

But

(f) A4
y_* = A3

y_i — A3y_2 , by definition,

(g) and A3y_i = 2mt — A3y_2 ,
from (b).

Subtracting (f) from (g) and solving for A3
y_i,

*

(h) A3y_i = Wj + §A4
y_a.

Substituting (h) in (e),

(18:2) A 2
y0 = A2

y_i + + lA4y_a .

To find A3
y0 we start with

A4
y_i = A3

y0 - A3
y_i,

(i) or A*y0 = A3y_i + A 4
y_i *

= mt + §A4y_2 + A 4
y_i, from (h).

But

Asy_* = A 4
y_i — A4y_2 ,

or A4
y_i = A4y.2 + A5y_2 .

(k) Also, A*y_» = A5y_s — A*y_»

(l) and A*y_* = 2m t — A5
y_», from (c).

Subtracting (k) from (1) and solving for A5y_2 ,

(m) A*y_* = tnt + $A*y_*.

Substituting (m) in (j),

(n) A4
y_i = A4y_j + m t + $A*y_».

Substituting (n) in (i),

(18: 3) A*y0 * m, +£a4
£=s + m* + iA*y-t .

ForAVo we start with

A*y_i « A4
y0 - AV_i,

AVo « A4
y_! + A*y-i

- A4y_t + tnt + JA*y-i + A6
y-i, from (n).

(o) or
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But

(p)
<1 = A*y_i 1 t>sTL

«= A*y_i — mi — JA*y_i, from (m);

(q) and AT
y_* - A“y_j — A*y_|.

(r) Also, A*y_4 = A7
y_* - AT

y_i

(s) and A7
y_» = 2m 7 -- A7y_4 , from (d).

Subtracting (r) from (s) and solving for A 7y_3 ,

(t) A7
y_i « mi + }A*y_4.

Substituting (t) in (q) and solving for A4y_2 ,

(u) A•y-t = A*y_i + m T + $A*y_4.

Substituting (u) in (p) and solving for A‘y_i,

(v) A‘y-i = mt + |A*y_» + m 7 + jA’y^.

Substituting (f) in (o), -

(18: 4) A 4
y0 = A 4y_ 2 + 2mt + 2A*y_» + m7 + ^A8y_4 .

Now substituting (18:1), (18:2), (18:3), (18:4) in (B), we get

y = y« + Ci(f»! + $A*y_0 + Ct(m» + A*y_i + $A4
y_j)

+ Ci(ma + m t + *A4y_* + $A*y_»)

+ C4(2m6 + mj + A4
y_i + 2A*y_j + |A*y_4),

or

y “ yo +Ci»»i + i + (C* + Ci)m*

/Cj 3C# \
+ + cA A4

y_» + terms in mi, A"y_j, etc.

Replacing the C’s and m’s by their values, we get

Ay_i + Ayo /« u(u - 1)\
y . y# + « + + -

J
A*y_i

(
:

«(« — 1) «(« — 1)(« — 2)\ A*y_* + A*y_t

2
+

6 / 2

«(« — 1) 3«(« — 1)(« —2) u(u — 1)(« — 2)(* — 3)>

Ft+ ( ^ + --- + I,
12 24
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or
Ay-i + Ay0

,
«2

,

«(«* - 1) A*y_s + A*y_i
” " » + * + Ta=,-, +—

«*(«* — 1 )

4!
A*y-2 +

By continuing the calculation as above outlined we arrive at Stirling's

formula, namely:

,TTTX
'

,

Ay_i + Ay0 u* «(«2 - I
s
) A2

y_2 + A*y_i
(in) y = y„ + « + —

A

2
y_i + -

«2(w2 — l
2
) m(m2 — 1

2)(m2 — 2 2
) A‘y_» -f- A‘y_*

H A 4
y_* -|

4! 5! 2

«2
(«

2 - 1
2
)(«

2 - 2 s
)

+— tt -&y-i +

+

X

6!

«(«2 - 1 2
)(«

2 - 2 2
)(«

2 - 3s
) •

[m
2 - {n T l )

2
]

(2b - 1)!

A2n-Iy_„ -|- A2B_I
y_(B_i)

«2
(«

2 - 1
2
)(«

2 - 2 2)(m2 - 3 2
)

• •
• [«

2 - (b - l )
2
]+ Ml

where u= (x—*0)/A.

In this formula there are 2b -f 1 terms, and the polynomial coincides

with the given function at the 2b+1 points

« =-«,-(«- 1 ), - (b - 2), 2
,
- 1

, 0,
1

, 2 ,
• • • b - 2 , b - 1

,
b;

or

x “ xt — nh,xg — (b— 1)A, • • • x0 — h, xt, xo+ h, • • • *o+ (b — l)h, x0+bA.

19. Bessel’s Interpolation Formulas. The derivation of Bessel’s

formula of interpolation is similar to that of Stirling’s. We first write

down a diagonal difference table as before, and mark for special con-

sideration the quantities lying as near as possible to the horizontal line

drawn half-way between ?o and yu These quantities are printed in

heavy type in the table below.
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y Ay A 2y A*y A A
y A*y A*y A 1

y A*y

y-*

Ay-*

y-*

Ay_,

A 2y~4

A 3y_.

y-2

Ay-2

A’y-i

A sy_j

A‘y_,

A*y_,

y-\ A*y_, A‘y-» A*y-»

Ay-i A‘y_, A*y_,
# A7

y-

4

yo Ay_i A*y_, Ay_j A^y.4

Ay, Ay_i A^_j Ay.,

yi Ay0 Ay_, Ay.i ay_,
Ayi A’y, A*y_i ATy-j

yt

Ay2

A»y,

A 5
yi A‘y0

A‘y_i

y»

Ayt

A*y.

A*yi

A‘yi

y*

Ay,

A2y

i

yi

• Table 8.

Let us now put

(a)
yo 4- yi

mo = )

2
w m2

=
AJ

y_i + A*y0

2

0)

<1II
w§

-2 + a*y

2

-l
id) m 6 =

A*y_» + A*y_i

2

(«)

A8
y= -< + A8

y

2

—8
; etc.

The m’s in this case are thus the arithmetic means of the ordinates

yo and y\, and of the even differences just above and below the hori-

zontal line through yi/2 .

We next write down Newton’s formula (I), starting from the entry y0 ,

as was done in Art. 18. Our problem is to express y<» Ay0l AJ
y 0 .

• • • A"y0

in terms of the m’s and the odd differences lying on the horizontal line

through yi/t. This will be done by an elimination process, by working
from A2y0 , A*y0 , etc. diagonally upward to the right until we reach the

quantities in the horizontal line. The odd differences in the horizontal

line will be underlined in the work which follows, to indicate that they

are not to be eliminated.
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By definition we have

Ayo = yi — yo.

.*• yo = yi — Ayo.

But yi — 2m 0 — y0 . from (a).

/. yo = 2m o — yo — Ay0 .

(19: 1)

•

yo = mQ - JAy0 .

To find A*y0 we start with

A 3y_i = A2
y 0 — A2

y_i, by definition.

•\ A2
y0 — As

y_i + A 2
y_i.

But A*y_i = 2m% — A*y0 ,
from (b).

/. A*y0 = A 3y_i + 2mt — A*y0 ,

or

(19: 2) A2
y0 = m2 + JA*y_i

.

For A*y0 we have

A 4
y_j = A3

y0 — A3
y_i, by definition.

(0 A3
y0 = A3

y_i + A4
y_i.

(g) But A 4
y_i = 2»»4 — A 4y_2) from (c),

(h) and As
y_j = A 4

y_i — A 4y_2 , by definition,

Subtracting (h) from (g) and solving for A 4
y_i,

(i) A4
y_i = »n« + |A5

y_j.

Substituting (i) in (f),

(19: 3) A*y0 = A*y_i + mt + $A‘y_*.

To find A 4
y0 we start with

A*y_i = A 4
yo — A 4

y_i, by definition.

G) A4
yo = A 4

y_i + A*y_i

= t»4 + $A*y_* + A*y_i, from (i).

(k) Now A*y_j = A‘y_i — A*y_*, by definition.
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(l) Also A7
y_» = A*y-t — A*y_», by definition,

(m) and A*y_j = 2m» — A*y_», from (d).

Subtracting (1) from (m) and solving for A*y_j,

(n) A»y_j = m» + |A7
y_».

Equating (k) and (n) and solving for A*y_i,

(o) A*y_i = A6y_t + w» -h iA 7y_3 .

Substituting (o) in (j), we get

(19:4) A4
yo = 7»4+|AV-j+m«+JAVi.

Now substituting these values of yo, As
y0 , A’yo, etc. in (A) of Art. 18,

we have

1 «(« — 1)

y = wo — —Ay0 + wAy0 H

«(«*— l)(w — 2)

('
+ A*y_i +

+ -jA*y_!^

T4V’)

+
«(« — 1)(« — 2)(m — 3)

’

24
+—

A

6
y_j + t»( + —A7

y_,^,

or, rearranging,

( 1\ ,

«(«- 1) ,
r«(«~l)

,

«(«—!)(«— 2) "J

y = «o+

1

«—— 1 Ay0H —

w

2+ I

—
1

J
A*y_j

T«(« - l)(u - 2) «(« - 1)(« - 2)(w - 3)"|

+
L

6 + U _T
ru(u - 1)(m - 2) u(u - 1)(« - 2)(« - 3)1 t

L 12 16 J
y~

*

+ terms in A‘y, #»», and A7
y_j.

Simplifying and reolacing the m’s by their values, we get

Vo + yi
.
/ 1 \ «(« - 1) A*y_i + A*y0

7——+(- 7)**+— i

—

«(« - 1)(« - i) A , ,
«(« - 1)(« + 1)(« - 2) A4

y_* + A4
y_i+

Ti + 7i ^

+ • •
.
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By continuing the calculation as carried out above we arrive at

Bessel’s formula of interpolation

:

(IV) y-
yo + yi

+ (-7)Ay0 +
«(« — 1) A*y_i + A2

y0

+

+

+

+

X

A8
y_i H

3! 4! 2

(« - $)«(# - 1)(m + 1)(« - 2)
A 6

y_2
5!

«(« — 1)(« + 1)(« — 2)(« + 2)(« — 3) A*y_* + A*y_2
_

6! 2
+ '

«(« - 1)(« + 1)(« - 2)(« + 2)
• •

• (m — «)(« + « — 1)

(2»)!

A2wy-n + A2ny_„+ i

2

(«- i)«(«- 1)(«+!)(«- 2)(m+ 2)
• • •(«-«)(«+»- 1)

(2» + 1)

!

In this formula it will be noticed that all terms involving differences

of odd order contain the factor u— \. Hence if u = \, these terms all

drop out and we get the simple formula

y« + yi 1 A 2
y_i + A2

yo 3 A4
y_2 + A4

y_i

2 8 2
+

128 2

5 A‘y_j + A*y_2

"
1024 2

1

[1-3-5-- - (2n - l)p A2ny_n + A2wy_n-n
( }

22»(2«)! 2

This important special case of Bessel’s formula is called the formula

for interpolating to halves. It is used for computing values of the function

midway between any two given values.

A more symmetrical form of Bessel’s formula is obtained by putting

u— or #=w+§. Making this substitution in (IV), we get
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y«'+ yi
, A ,

(#* - i) &y-\ + &yo
,

»(»
2 - 1).,

(VI) y + «Ayo +— + A*y_,

65

(v2 - 1)(»* - *) A 4

y_2 + A4
y_i »(»

2 - i)(»
2 -

-J)
H ; -Asv_j

4! 2 5!
7

(»* ~ 1)(p
2 ~ •;)(»* ~ 7) A,

y_» + A*y-t
+

6 ! 2

+
(t>

2 — j)(»
2 —

f)
• •

• [p
2 — (2n — l)

2/4) A 2"y_» + A2"y_,+1

2

_ *)(„* (2« - l) 2/4] x,+ A-2n+1v_ n .

(2n + 1 )!

This is the ipost convenient form of Bessel’s formula.

In formulas (IV) and (VI) there are 2»+2 terms, and the polynomials

represented by them coincide with the given function at the 2»+2
points

n, — n + 1 ,
— « + 2 ,

••• — 1
,
0

,
1

,
2

,
1

;

2»+l 2n— 1 3 113 2»— 1 2»+l

2
' ~ 2' 2’ 2’

2
’

2
’

2
’

2

u — —

v — —

*= *0 — nh,Xo— (#— \)h, • • Xo— h,Xo,xo+ h, • -Xo+nh,Xo+(»+!) k.

The zero point for the v’s is *o+h/2, whereas for the u's it is

We shall now apply Stirling’s and Bessel’s formulas to some numerical

examples.

Example 1. The following table gives the values of the probability

integral

e~x*dx

for certain equidistant values of x. Find the $alue of this integral when
*=0.5437 .
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X /(*) A/(*) A*/(*) A’/(*) A4/(x)

x^o.si 0.5292437

86550

*.*0.52 0.5378987

85654

-896
-7

OfiO.53 0.5464641

84751

-903
-7

0

X* 0.54 0.5549392

83841

-910
-7

0

0.5633233 -917 1

V* 82924 -6
0.56 0.5716157 -923

i

,

*3 0.57 0.5798158 !

Solution. Here we take *o = 0.54 and * = 0.5437. Since h = 0.01, we
have

* - *o 0.5437 - 0.54 0.0037
u = = = = 0.37.

h 0.01 0.01

(a) Using Stirling’s formula, (III), we have

(84751 + 83841)
/(0.5437) = 0.5549392 + 0.37- -

2

(0.37)* 0.37(0.37* - 1) (-7-7)
+ -(-910)+

= 0.5549392 + 0.00311895 - 0.00000623 + 0.00000004.

0.5580520.

(b) To find /(0.5437) by Bessel’s formula it is more convenient to

use (VI). Here

v = u - $ = 0.37 - 0.50 = - 0.13.

Substituting in (VI), we have

/(0.5437)
0.5549392 + 0.5633233

+ (- 0.13)(83841)
2

0.0169-0.25 /-910-917\ -0.13(0.0169-0.25)(-7)

2 V 2 /
+

6

0.55913125 - 0.00108993 + 0.00001065

0-5580520.

Example 2. The values'of e~x for certain equidistant values of x are

given in the following table. Find the value of r* when *=1.7489.
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X A A* A1 A4

1.72 0.1790661479

-17817379

1.73 0.1772844100

-17640094

177285

-1762
1.74 0.1755204006

-17464571

175523

-1749
+13

1.75 0.1737739435

-17290797
173774

- 1727

+22

1.76 0.1720448638

-17118750

172047

-1712
+15

1.77 0.1703329888

-16948415
170335

1.78
1

0.1686381473

Solution.

(a) By Stirling’s formula.

Here we take * = 1.7489, *0= 1.75, A = 0.01.

Hence •

1.7489 - 1.75 0.0011
u - 0.11.

0.01 0.01

Substituting in (III), we have

(- 17464571 - 17290797)
/(1.7489) = 0.1737739435 - 0.11

0.0121 /0.0121 - 1\ /- 1749 - 1727\
+_(„3„4) - 0,U(——)(•

J )

/0 .0121 - 1\, %+ 0.0121 f -
J(22)

= 0.1737739435 + 0.00019115452

+0.00000010513 - 0.00000000315;

or /(1.7489) =g~1 -74>, = 0.1 739652000 .

This value is correct to ten decimal places.

(b) By Bessel’s formula.

Since the value 1.7489 is nearer to the middle of me interv

1.74-1.75 than it is to the middle of the inferval 1.75-1.76, we take

**=1.74 so as to make v as small as possible. Hence we have
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1.7489- >.74

u =
0.01

— = 0.89,

„ = = 0.89 - 0.50 = 0.39.

0.1755204006+0.1737739435
... /( l . 7489) = + 0.39(— 17464571)

/0.39 2 - 0.25\ / 175523 + 173774X

+ (

—

)(—

i

)

/0. 39- — 0. 25\
+ 0.39 (

J
(
- 1 749)

(0.39* - 0.25)(0.39 5 - 2.25) /13 + 22\
+

24 \ 2 J

= 0.17464717205 - 0.00068111827

- 0.00000085490 + 0.00000000111

+ 0.00000000001;

or /( 1.7489) =01739652000, as before.

We could also take x0 = 1.75, in which case we should have v= —0.61.

This would give

/(l. 7489) = 0.17290940365 + 0.00105473862

+ 0.000 0105562 + 0.00000000214

- 0.00000000002 = 0.1739652000.

This value is also correct to ten decimal places, but the series con-

verges slightly less rapidly than in the preceding case; and both of these

. series given by Bessel’s formula converge a little less rapidly than the
' one given by Stirling’s formula.

Remark. The question naturally arises at this point as to which is

the more accurate, Stirling’s formula or Bessel’s. The answer is that

one is about as accurate as the other. For a given table of differences

the rapidity of convergence depends upon the magnitude of u in the

case of formula (III) and upon the magnitude of v in the case of for-

mula (VI). The smaller the values of u and v the more rapidly the series

converge. We should therefore always choose the starting point *oso
as to make u and v as small as possible. In most cases it is possible to

choose the starting point so as to make —0.5 g u ^ 0.5 and — 0.5 g 0.5.

Thus, in Example 1 the starting point was so chosen that « = 0.37,
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1/ = — 0.13; and in Example 2 we had «=— 0.11, z/ = 0.39. It is to be

noted that Bessel's formula converged the more rapidly in the first

example and Stirling's the more rapidly in the second, the reason being

that v was smaller than u in the first case and u smaller than v in the

second.

As a general rule it may be stated that Bessel's formula will give a

more accurate result when interpolating near the middle of an interval,

say from 7^=0. 25 to 0.75 (v= —0.25 to 0.25); whereas Stirling's formula

will give the better result when interpolating near the beginning or end

of an interval—from u= —0.25 to 0.25, say.

For another phase of this question see Chapter V.

Example 3. The following table gives the values of the elliptic

integral

for certain equidistant values of
<f>. Find the value of F(23°.5).

* • FM AF A-F a*f
1

a*f

21° 0.370634373

18070778

22 0.388705151

18129780

59002

2707

23 0 406834931

1819J489

61709

2711

4

24 0.425026420

18255909

044 20

2704

-7

25 0.443282329

18323033

67124

26 0.461605362

Solution . Since we are to find the value of the function half-way

between two given tabular values, we use formula (V) for interpolating

to halves. Hence we have

F(23°.5)
0.406834931 + 0.425026420 1 61709 + 64420

2 * 8 2

3 4-7
+

128 2

= 0.4159306755 - 0.0000078831 = 0 .415922792.

This result is probably correct to its last figure, since the differences in

the table are perfectly regular and decrease rapidly.
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EXAMPLES ON CHAPTER IH

l. Find logio tan 56' 43".5 by Bessel’s formula (VI), given

log tan 52 ' = 8. 1797626 -10
“ “ 53 =8.1880364— 10
* * 54 =8.1961556-10
* “ 55 =8.2041259-10
“ “ 56 =8.2119526-10
* “ 57 =8.2196408-10
“ “ 58 =8.2271953-10
“ “ 59 =8.2346208-10.

2.

Find sin 56° 50' 31".58 by Stirling’s formula, given

sin 56° 50' 00" = 0.8370827
« « « 10"= 0.837 1093
“ “ “ 20" = 0. 8371358
“ “ “ 30" = 0. 8371623
“ “ “ 40" =0.8371888
“ “ « 50" = 0. 8372153

“ 57° 51' 00" = 0. 8372418.

3.

Compute the value of (2/y/T)
f*e~*'dx when * = 0.6538, given the

following table:

X (2/y/7r)/o6
”* dx

0.62 0.6194114

0.63 0.6270463

0.64 0.6345857

0.65 0.6420292

0.66 0.6493765

0.67 0.6566275

0.68 0.6637820.

4.

The mean atmospheric refraction, R, for a star at various altitudes

h* above the horizon is given in the table below. Using Bessel’s formula

tor interpolating to halves, find the refraction for a star at an altitude

of 27° above the horizon*.
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h R

22° 2' 23". 3

24 2 10 .2

26 1 58 .9

28 1 49 .2

30 1 40 .6

32 J 33 .0

5, The declination of the moon at the beginning (noon) of certain

days in August, 1918, was as given below. Compute the declination for

9:35 p.m., August 25.

Aug . 20

,

-16° O' 51' .0
U 21 11 24 51 .8
U 22 6 3 29 .4
u 23 -0 17 25 .8
a 24 + 5 30 21 .5
u 25 10 56 40 .3
a 26 15 39 57 .8
u 27 19 22 3 .7
u 28 21 49 48 .3
i 29 22 56 22 .8
u 30 22 41 54 .1

6. The values of an elliptic integral for certain values of the amplitude

^ are given in the table below. Compute the value of the integral

when <A = 24° 36' 42"

21° 0.370634373

22 0.388705151

23 0.406834931

24 0.425026420

25 0.443282329

26 0.461605362

27 0.479998225



CHAPTER IV

LAGRANGE’S FORMULA. INVERSE INTERPOLATION

I. LAGRANGE’S. FORMULA OF INTERPOLATION

20. Introduction. The interpolation formulas derived in the pre-

ceding sections are applicable only when the values of the independent

variable are given at equidistant intervals. It is sometimes in-

convenient or even impossible to obtain values of a function for equi-

distant values of the independent variable, and in such cases it is

desirable to have an interpolation formula which involves only such

data as may be at hand. We shall now derive such a formula.

21. Lagrange’s Formula. Let (x0 , y0), (xu yi), (*2 , ys),
• • •(*., y„)

denote n+1 corresponding pairs of values of any two variables x and y,

where y—f{x). We replace the given function by a polynomial of the

nth degree, which may be written in the following form

:

(21: 1) <t>(x) = A 0(x — zi)(z — xt)(x — *»)••• (x — x„)

+ Ai(x - Xo)(x - xt)(x - x3)
'(* - *„)

+ A t(x - x0)(x - *i)(* — *,)••• (x — xn)

-|- A n(x ~ X0)(x ~ Xi)(* ~ Xt) (X ~ X„_,).

Here there are n+ 1 terms and n factors in each term.

We next determine the n+ 1 constants ^4o> ^i> ^ 2 t
- - - so as to

make ^(x0) —yo, 4>(xi) =yu • •
<f>(xn ) =y„. Putting x =x0 and <j>(x0) =y»

in (21 : 1), we get

y0 = Ao(x0 - xi)( *0 — **)• • (x0 - xn)

.

(x0 — Xi)(*o — Xt)
• •

• (x0 - x„)

Again, putting x=xi, <t>(x{) =yi in (21:1), we have

Vi = A i(*i — x0)(xi — x2)
• •

• (X2 — *„).

A 1
= yi

(xi,— X0) (Xj — X2) ' •
• (xi — Xn)

72
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In a similar manner we find

A t =
(Xt — x0)(xt

yi
.

,

X\)(x2 — x3)
•

• (x« - Xn)

A n =
yn

( X n — Xu)(xn — *0 • ( Xn — X„_0

Substituting in (21 : 1) these values of the A *s, we get

/If7TX , * (* — *l)(* —**)•(*— Xn)
(VII) *(*) = 7 77

7 7 ryo
(*0 — ATiKXo — JTa) - -

• (*o — *n)

(* - - *2)
• (x ~ Xn)

(*1 — *o)(*l ~ X2)
•

* (xi — Xn
)^

(.r — x 0)(x — X])(x — x3)
• •

• (x — xn)

y2+
(*2 “ * o)(*2 — Xi)(x2 — X 3)

• *
• (x2 - Xn)

(* ~ *o)(* — Xi) ’ •
• (X ~ Xn-Q

^

(Xn ~ X0)(xn - Xi) ’ ’

’ (Xn ~ Xn- 1 )

This formula (VII) is known as Lagrange's formula of interpolation.

The values of the independent variable may or may not be equidistant.

It is to be noted that Lagrange’s formula does not involve the successive

differences of the function concerned, and that there is nothing in it

by which we can estimate the reliability of the results obtained.

Since Lagrange’s formula is merely a relation between two variables,

either of which may be taken as the independent variable, it is evident

that by considering y as the independent variable we can write a formula

giving x as a function of y. Hence, on interchanging x and y in the right-

hand member of (VII) we get

(VIII) «,) -
(y - yMy -»>••• (y - »> „

(.vo - yi)(yo — ?*)••• (yo - yn)

(

y

- y„)(y - yt) (y - yn)

H xi

(yi - yo)(yi - yt) (yi - y„)

(

y

- y0)(y - y0 • -
• (y - y»)

-| xt + • • •

(yt - yo)(y* - .yi) •(?*- y»)

,
(y - yo)(y - yi) (y - y.~

0

+ 3 r; : : r*».
(y»

- yo)(y« — .yi)
• •

• (y» - y.-O
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The chief uses of Lagrange’s formula are two: (1) to find any value

of a function when the given values of the independent variables are

not equidistant, and (2) to find the value of the independent variable

corresponding to a given value of the function. This second problem

is solved by means of formula (VIII).

We shall now work two examples to illustrate these uses.

Example 1. The following table gives certain corresponding values

of x and logio*. Compute the value of log 323.5.

• X 321.0 322.8 324.2 325.0

logi«* 2.50651 2.50893 2.51081 2.51188

• Solution . Here * = 323.5, Xt = 321.0, *i = 322.8, ** = 324.2, ** = 325.0.

Substituting these values in (VII), we get

logio 323.5
(323 . 5 - 322 . 8) (323 . 5 - 324 . 2) (323 . 5 - 325 . 0)= - X 2.50651

(321 - 322. 8) (321 - 324. 2) (321 - 325)

(323.5 - 321) (323 . 5 - 324.2)(323.5 - 325)
+ X 2.50893

(322.8 - 321)(322.8 - 324.2)(322.8 - 325)

(323.5 - 321) (323 . 5 - 322.8)(323.5 - 325)
+ - - - X 2.51081

(324.2 - 321) (324. 2 - 322. 8) (324. 2 - 325)

(323 .5- 321)(323 . 5- 322 . 8)(323 .5-324.2)
H - - - X 2.51188

(325 - 321)(325 - 322.8)(325 - 324.2)

= - 0.07996 + 1.18794 + 1.83897 - 0.43708

= 2.50987.

This result is correct’ to the last figure.

Example 2. The following table gives the values of the probability

integral (2/v/^)/*e~
I’d* corresponding to certain values of *. For

what value of * is this integral equal to i ?

(2/y/i)r,r*dx X

0.4846555 0.46

0.4937452 0.47

0.5027498 0.48

0.5116683 0.49

Solution. Calling y the value of the probability integral, we have

y 1 0.5, *o = 0.46, x\ = 0.47, ** = 0.48, ** “ 0.49.
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Substituting these in (VIII), we get

(0.5 - 0.4937452)(0.5 - 0.5027498) (0.5 - 0.5116683)
* " (0.4846555 - 0.4937452) (0.4846555 - 0.5027498) (0.4846555 - 0.5116683)

* '

(0.5 - 0.4846555) (0.5 - 0.5027498) (0.5 - 0.51 16683)
+

(0.4937452 - 0.4846555) (0.4937452 - 0.5027498) (0.4937452 - 0.5116683)
X *

,
(0.5 - 0.4846555) (0.5 - 0.4937452) (0.5 - 0.51 16683)

fi+
(0.5027498 - 0.4846555) (0.5027498 - 0.4937452) (0.5027498 - 0.5116683)

X °‘

(0.5 - 0.4846555) (0.5 - 0.4937452) (0.5 - 0.5027498)
9+

(0.5116683 - 0.4846555) (0.51 16683 - 0.4937452)(0.5116683 - 0.5027498)
X

62458 X 27498 X 116683

90897 X 180943 X 270128
X 0 46

153445 X 27498 X 116683
+

90897 X 90046 X 179231
X 4

.
153445 X 62548 X 116683 „4* X 0.48
180943 X 90046 X 89185

153445 X 62548 X 27498 ^ ^X 0 49
270128 X 179231 X 89185

*

- - 0.0207787 + 0.157737 + 0.369928 - 0.0299495

- 0.476937 ,

The true value to six decimal places is 0.476936.

Note. The computation in this problem should be performed by
logarithms unless a calculating machine is available.

Remark. The reader who has followed through the computation

in the two preceding examples will have noticed that Lagrange’s

formula is tedious to apply and involves a great deal of computation.

It must also be used with care and caution, for if the values of the

independent variable are not taken close together the results are liable

to be very inaccurate. For these reasons Lagrange’s formula should

not be used except in cases where Newton’s, Stirling’s, and Bessel’s

formulas are inapplicable.

n. INVERSE INTERPOLATION

22. Definition. Inverse interpolation is the process of finding the

value of the argument corresponding to a given value of the function

when the latter is intermediate between two tabulated values. The
problem of inverse interpolation can be solved by several methods,

but in this book we shall explain only three.

23. By Lagrange’s Formula. One method of dealing wit!' the problem

is to use Lagrange’s interpolation formula in the form (VIII), in which
x is expressed as a function of y. Example 2 of the preceding article
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was really a problem in inverse interpolation. We shall therefore not

explain this method further.

24. By Successive Approximations. A second method is that of

successive approximations or iteration . To see how this method is applied

let us consider Newton's formula (I), namely,

u(u — 1) u(u — 1 )(u — 2)

y = yo + uAy0 H A 2
y0 H A 3

y0

u(u - 1 )(u - 2){u -3)
+ A 4

^o + * •
* .

4!

Transposing and dividing through by Ay 0} we have

y — y0 u{u — l)A 2
y 0 n(u ~ l)(w — 2)A 3

y0

(1) u
Ay0 2Ay0 3 ! Ayo

u(u — 1)(« — 2)(u — 3) A 4
y0

4! A vo

To get a first approximation for u, we neglect all differences higher

than the first and therefore have

«<»> = y - yo

Ayo

The second approximation is obtained by substituting u (l) in the

right-hand side of (1). We then have

y — yo u (1)(u (l) — 1) A 2
y0 u (l) (u (1) —

1 )(u (1) — 2) A 3
y 0

) u (2)

Ay0 2 Ay0 3! Ay0

w (i)(w (u _ i)(w (i) - 2)(w< 1 > - 3) A 4
y0

4! Ay0

The third approximation is

y - y0 w (2) (« <2) ~ 1) A 2
y0 « <2) (« (2) - l)(w (2) - 2) A 3

y 0

(3) « (8)

Ayo 2 Ay0 3! Ayo

w (2)(w (2> _ i)(w ( 2 ) _ 2)(uW - 3) A 4
y0

4! Ayo

And so on for higher approximations.

We shall now illustrate the method by working an example.
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Example 1. Given a table of values of the probability integral

(2/a/ir)f*e~
xt
dx, for what value of x is this integral equal to J?

X
,

y Ay A2
y A3y A4

y

0.45 0.4754818

91737

0.46 0.4846555

90897

- 840

-11
0.47 0.4937452

90046

-851
-10

1

0.48 0.5027498

89185

. -861
- 8

2

0.49 0.5116683

88316

-869

0.50 0.5204999

Solution. Here it is better to use a central-difference formula.

Inspection shows that the desired value of x lies between 0.47 and 0.48,

and a rough linear interpolation shows that it is about 0.47f. Hence

we take x0 = 0.47 and use Bessel’s formula. We therefore have

x0 = 0.47, h = 0.01, y = j = 0.5.

Substituting in Bessel’s formula (VI) this value of y and the ap-

propriate quantities from the table, we have

(v
2 - 0.25)

0.5 = 0.4982475 + 0.0090046:> + (- 0.0000856)
2

®(»*-0.25),
+ — (- 0 . 0000010).

6

Transposing and dividing through by 0.0090046, we get

(4) o= 0 . 194623- (v
s- 0 . 25) (- 0 . 004753) - v(v

*

- 0 . 25)(- 0 . 0000185)

.

A first approximation for v is obtained by neglecting all terms beyond

the first in the right-hand member of (4). Hence

»0) = 0.194623.

Substituting this for v in the right-hand member of (4), we find the

second approximation to be

»«> = 0.194623 - [(0.194623)* - 0.25R- 0.004753)

- 0.194623 [(0.194623)* - 0.2$](- 0.0000185)

» 0.194623 - 0.001008 - 0.000001 = 0.193614.
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Now substituting this value for v in the right-hand member of (4), we
find

„<»> = 0.194623 - 0.0010101 - 0.000001 = 0.193612.

This value differs only slightly from the preceding, and we therefore

make no further approximations.

Since »=»+§ and x=x0+hu, we have

« = 0.693612,

' x = 0.47 + 0.01(0.693612) = 0.47693612 .

This value is correct to six decimal places.

Note. In this example it is not possible to obtain more than five

trustworthy figures in the value of v, because the right-hand member of

(4) is the result of a division by the approximate number 0.0090046,

the fifth significant figure of which is uncertain. As a matter of fact,

only the first four figures in v are correct.

If all differences higher than the second are negligible, the problem

of inverse interpolation amounts only to the solution of a quadratic

equation. The following example illustrates this.

Example 2. Given sinh x = 62, to find x.

Solution. Forming a difference table as shown below, we find that

all differences above the second are zero. We also notice that the re-

quired value of x is slightly greater than 4.82. Hence we take Xo=4.82
and use Stirling’s formula.

Substituting y = 62 in Stirling’s formula, (III), we have

62 =,61.9785 + 0.6199m + 0. 0031m1
,

or 31m* + 6199m = 215.
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- 6199+ \/(6199)* + 4 X 31 X 215 -6199 ± 6201.15
« ” — =

62 62

2.15
0.0347.

62

Since h *0.01 and x =*xo+A«, we get

* = 4.82 + 0.01(0.0347) = 4.8203 .

25. By Reversion of Series. The most obvious method of solving

the problem of inverse interpolation is by reversion of series; for all the

interpolation formulas thus far developed are in the form of a power
series, and any convergent power series can be reverted. Thus, the

power series

(25: 1) y — o« + &ix + o*** + o»x* + • • o,x* + • • •

when reverted becomes

(25:2) x

where

When reverting a series with numerical coefficients, it is better to

compute the c’s from equations (25 :3) and then substitute their

values in (25: 2).
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* = IVo + uAy0 + ZlZZZj)^ + »(« - 1)Q - 2)
2

3/
~A^

+<!LzW*z*to-3)
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A*yo

*<?-»wi>,
~

)
"

a» = >0,

°1 == Aj>0 - J^Z?
_j_

A*
v° _ A<v„

2 3 ~T"
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'

b) Stirli”g’s Formula.

>
->•+*»,+$>.,_, + «*-j) „v _

2
3i

” +—

a»® yo, <zi = Wl _5
j _ f*y-i av_,

6
^ -IT'

6
24
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c) Bessel's Formula (VI).

, „
,(•*“!)

,

(?
* —

i)
,

(»* -!)(»*- *)

y = Wo + vAy0 4 m% + v A’y_i + — —
2 3! 4!

= (».-T +^) +(^-—V +f-'-V\ 8 128/ \ 24 / \ 2 48/

A*y_i m t

where w 0 ,
w2 ,

have the values given in Art. 19. Here

m 2 3nti A 3
?-i

Qq = fflo 1
; Qi — Ajo >

8 128 24

m 2 5m 4

at ~~2~ ~48’

A*y_i «4
03 = ; <74

—
6 24

We shall now work Examples 1 and 2 of the preceding article by re-

verting the series. For Example 1 we use Bessel’s formula as before.

From the table on page 77 we get

wo = 0.4982475, m, = - 0.0000856, w 4 = 0.00000015.

Hence
0.0000856

ao = 0.4982475 + = 0.4982582,
8

n nnnnni

n

a, * 0.0090046 + — 9.00900464,
24

0.0000856
a, - 0.0000428,

0.0000010
a, - 0.00000017,

= 0, practically.

Since y — i « 0.5, we have

y — Jo 0.5 - 0.4982582 •

a — =0.1934336.
0, 0.00900464
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-Also

a, 0.0000428— - - 0.004753.
a, 0.00900464

^
= (- 0.004753)* = 0.0000225910,

^
= - 0.0000001074,

a, 0.00000017— = - 0.00001888.
ai 0.00900464

Hence

c, = - — = 0.004753,
a i

d =0.00001888 + 2(0.000022591) = 0.00006406,

c3 =0 + 5(— 0.004753)(— 0.00001888) - 5(- 0.0000001074)

= 0.000000986.

Substituting these quantities in (25: 2), we get

v = 0.1934336 + 0.004753(0. 1934336)* + 0.00006406(0. 1934336) 1

= 0.1934336 + 0.0001778 + 0.00000046

= 0.193612.

Hence
u = v + i - 0.693612

and

* = *o + hu = 0.47 + 0.01(0.693612) = 0.47693612.

which is the same value as found by the method of successive ap-

proximations.

To solve Example 2 we use Stirling’s formula, as before. Here

flo = yo B 61.9785,

oi = 0.6199,

0.0062
a, 0.0031,

2

fli
i
= a4 = 0.

Since y — 62, we have
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Hence

y - at = 62 — 61.9785

y — oo 0.0215

ai 0.6199

fli 0.0031

Z
~

0.6199

0.0215.

0.034683,

= 0.005001.

ci = - 0.005001, c, = 2(0.005001)* = 0.00005002,

c3 = 0, practically.

Substituting these values in (25: 2), we have

« = 0.034683 - 0.005001(0.034683)*

= 0.0347.

* = 4.82 + 0.01(0.0347) = 4.8203,

as previously found by the method of iteration.

Remark. The problem of inverse interpolation should be dealt with

in practice by the iteration process or by the reversion of series. The
former will usually be the shorter.

EXAMPLES ON CHAPTER IV

1. From the data in the following table find by Lagrange’s formulas

the value of y when x = 102 and the value of x when y = 13.5.

X y

93.0 11.38

96.2 12.80

100.0

104.2 17.07

108.7 19.91
•

2. If cosh x — 1.285, find x by inverse interpolation, using the data

in the following table:

X cosh x

0.735 1.2824937

0.736 1.2832974

0.737 1.2841023

0.738 1.2849085

0.739 1.2857159

0.740 1.2865247

0.741 1.2873348

0.742 1.2881461



CHAPTER V

THE ACCURACY OF INTERPOLATION FORMULAS

26. Introduction. In the preceding articles we have dealt with

polynomial formulas for representing a given function over an interval.

These polynomials coincide with the given function at the points

(*o, yo), (*i, yi), (*2 , y2), etc. Hence it is reasonable to suppose that we
can make these polynomials approximate the given function as closely

as desired by merely increasing the number of coinciding points. Such
indeed is the case if we don’t attempt to spread over too wide an interval,

but the necessity for caution in this matter will appear from the

following considerations.

When the number of points jc 0i X \ ,
x2t . . . x„ increases indefinitely, the

polynomial interpolation formulas become infinite series, called

interpolation series
;
and just as a power series converges in a certain

interval and diverges outside the interval, so likewise an interpolation

series converges and represents the given function over a certain inter-

val but fails to represent it outside of that interval. For example, if

we should attempt to represent the function 1 /(I +x2
) over the interval

— 5^x£5 by an interpolation series, we should find that the series

would not represent the function at all when x = 4. Asa matter of fact,

the series would converge and represent the function to any desired

degree of accuracy between x = —3.63 and x = +3.63, but would diverge

and fail to represent it outside of this interval.* The investigation of

the convergence of interpolation series is a somewhat lengthy matter

and requires the use of functions of a complex variable.f We shall

therefore not enter into it, but shall merely derive expressions for the

remainder terms in the polynomial formulas previously considered.

27. Remainder Term in Newton’s Formula (I) and in Lagrange’s

Formula. The derivation of the remainder term in a polynomial

* Runge, “Cber empirische Funktionen und die Interpolation zwischen aqui-

distanten Ordinaten.” Zeitschrtft fur Math . und Physik. Vol. XLVI (1901), p. 229.

See also Steffensen’s Interpolation
, pp. 35-38.

t The interested reader should consult the paper by Runge, cited above, and also the

following Borel Monographs: Norlund, Lecons sur les Series d'Interpolation, Paris, 1926.

Borel, Lemons sur les Fonctions de Variables Rielles et les Developpements en Siries de

Polynomes . Paris, 1905. Mon tel', Lemons sur les Siries de Polynomes d une Variable

Complexe
, Paris, 1910. Also Ruage’s Theorie und Praxis der Reihe

,
Leipzig, 1904.

84
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interpolation formula is very similar to that of finding the remainder

in Taylor’s expansion. Thus, to find the remainder term in Newton’s
formula (I) and in Lagrange’s formula, we write down the arbitrary

function.

(27: l)F(g) -/(*) - *(z) - [/(*) - <fi(x)]

(Z ~ *°)(g ~ Vl)
'JLZ---L

(X - Xq)(x - Xj) • (x - Xn)

where f(x) denotes the given function, <f>(x) a polynomial interpolation

forjnula, and z a rea l variable. We shall assume that/(i)'is^onnnuous

and possesses continuous derivatives (if all orders within the int^n^al,

frgm Xq tojcn . 0
Now F(z) vanishes for the n+ 2 values z = x, x

9f Xi, • x„; and since

f(x) is continuous and has continuous derivatives of all orders, the same

is true of f{z) and hence of F(z). F(z) therefore satisfies the conditions

of Rolle’s theorem. Hence the first derivative o f F(z) vanishes at least

once between every two consecutive zero values of F{z). Therefore in

the interval from x 0 to xu F'(z) must vanish w + 1 times, F"(z) n times,

F'"(s) n — 1 times, etc. Hence the ( w + l)t h derivative 7>f F{z) w illi

vanish_at least once at some point whose abscissa is £.

'

Since <j>(z ) is a polynomial of the wth degree, it77w + l)th derivative

is zero. furthermore, since the expression (z- x {))(z — Xi)(s— *2)

(3— is a polynomial of degree w + 1, it follows that its (w + l)th

derivative is the same as the (w + l)th derivative of s’
1 *'

1

,
which isjtw.d-.ljj,

On differentiating (27 : 1) w + 1 times with respect to s we therefore have

( w + 1 )

!

f ( "+ l)
(a) = /

(n+|l
(s) - 0 - [fix) - d>(x) ]

— 7

- • x — .VoM.r — xO •
• (x — x,,)

But since F ( *+n (s)=0 at some point 3 = $, we have

(w+1)!
0 = /(-+»({) - [/(.r) - 0(.r)

]

(.V — Xo){x — -Ti)
' •

• (x — A-n )

Hence

/(»-•»>({)

f(x) — <t>(x) — ~(* — Xo)(x — j-'l)
•••(*— -t„).

(« + !)•'

,
Now since f(x) -tf>(x) is the difference between the given fumiior

and the polynomial :it any point whose abscissa is x, it represents the

error committed by replacing the given function by the polynomial.

Hence we have

/•<»*•>(£)

(27: 2)] Error = Ji„ = ——(* - *o)(r ~ *>) • (* ~ *0,
(«.+ 1 !)
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where £ is some value of x between xo and x„. This is the remainder term

in formula (15: 2) and in Lagrange's formula (VII).

To get the remainder term in formula (I) of Art. IS we recall that

x—Xo=hu, x—Xi=k(u—l), x—xi=h(u—2), •
• x—xn =h(u—n). Sub-

stituting these values of x—xo, x—xi , etc. in (27: 2) above, we have

(27: 3) R»
»(£)

(» + 1 )!

u(u — l)(u — 2) ••(« — «).

If the analytical form of the given function /(x) is unknown, then the

best we can do is to replace/
(n+1)

(£) by its value in terms of differences.

The general relations between differences and derivatives are expressed

by the following formulas :*

(<*)

(b)

A */(x) = (Ax)"/(b) (x + 6nAx), 0 < 6 < 1.

A n
J(x)

lim
Ax—0 (Ax)"

= /
(B,

(*).

Putting x=Xo and Ax =h, we have from (a)

to /<">(xo + enh)
A"/(x0)

A"

Now since x0+nh and £ are values of x at points within the interval

of interpolation (that is, between x0 and x„) we may, for practical

purposes, put £=Xo -\-6nh. Making this substitution in (c), we get

(d) /<»,(£) =
A"/(x)

A"

Hence we have

to /c*»(t) =

~

7v
o)

* ^
A-+i

practically. Substituting this value of

/

<n+1)
(£) in (27 : 3), we get

A n+1
yo

(27:4) Rn = — «(« - 1)(m - 2) •••(«- »).
(* + 1 )!

The smaller the interval A is taken the more nearly does (27:4) give

the actual error.

28. Remainder Term in Newton’s Formula (II). To find a formula
for the remainder in Newton’s formula for backward interpolation we
write down the function *

* See Vallfc-Poussin’s Court d’Analyse Infinilesimale, I, pp. 72-73.
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F(.) -m - «C4 - i/w - f .

-
.

(* - *„)(* - *»-l) •••(*- *o)

differentiate it ft-f-1 times with respect to z, and put F(n+1> (s) = 0 for

We thus find

f(n+l)(t)

/(*) “ ^(*) = — (* - *„)(* ~ *»-i) *o),
r i

or

/<n+1) (£)
(28: 1) Error = *. =——,(* - *„)(* - *„_,)(* - •••(*-*«).

(» + 1 )!

This is the remainder term for formula (16:2).

To find the corresponding formula in terms of u we recall that

X- Xn x - X„_i * - *„-i
, „— w, u l

t w "f 2, M + »•

Substituting these values x—xn etc. in (28: 1) above, we get

(28: 2) R*
A"+i/<"+i>(£)

(»+ 1)1

«(« + 1)(« + 2)* •••(« + »).

To find a formula for 2?„ when the analytical form of the given

function is unknown, we replace /( *+1)
({) by An+iyn/h1,+l in (28: 2).

The result is

(28: 3) J?„ = «(« + 1)(« + 2) •••(« + »).
(n + 1)!

29. Remainder Term in Stirling’s Formula. We next turn our

attention to the central-difference formulas of Stirling and Bessel. To
find the remainder term in Stirling’s formula we write down the

arbitrary function

(29: 1) F(z) = f(z) - 400

- [/(*) - *(x)]
(g - S0)(z - XI)(z - Jg-l) *n)(z - *-»)

(* - *<>)(* - Xi)(x “ *-l)
* *

* {X - *»)(* - *-n)

This function vajiishesjor the 2w+ 2 values z = x, *o» xu * • • x-i ,

x-i, • * jt_n . We assume that^x) is continuous and has_£Qn tiP,uo.us

denyatives of alj, orjers up to 2

w

+ L Hence F(z) satisfies the conditions

of Rolled theorem. Also, since <f>(z ) is a polynomial of degree 2n, its

(2»+l)th derivative is zero , Hence on differentiating F(z)2n-1-1 times

and putting F(*"+1) (s) = 0 for some value s* f, we get
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o */<*«+!)({) -0- [/(*)-«(*)}
(2n+ 1)1

(z-*o)(*-*i)(,.r-Jr_:) • •
• (x-*»)(*—*_„)

from which

/< 2"+»({)

f(x) - <l>(x) « -———(x - Xq)(x - xO(x - X-i) x - *»)(* - *_),
(2n + 1)!

or

/
<Sn+1)

(£)

(29:2) Error«=•£„=————(x- x0)(x- xi)(x- x-i) • (*- *„)(*- *_.)•
(2n + 1)!

We write this formula in terms of « as follows: Since

x — x0 = hti, x — x, = h(u — 1), •••*—*„ = h(u — »), and

x — x-t = x — (x0 — h) = x — a:0 + h - hu + h — h(u + 1),

x — x_* = A(m + 2),
• • • * — x_„ = A(« + n),

we have

(29: 3) =
£*n+iy(2n+l)(£)

(2»+ 1)!

m(«2 — l)(w2 — 2 2)(m2 — 32
)

• •
• (m2 — «2

),

where £ is some value of x between and x„.

If the analytical form of f(x) is unknown, we replace /<2n+1) (f) by

Wjn+ 1 ,
where

A2B+1
y_«_i + A2 "+1y_»

**2»+l — I

Hence we get from (29: 3)

(29: 4) Rn = ———— «(«* - l)(w2 - 22
)

• •
• («2 - w2

).

(2» + 1 )

!

In formulas (29: 3) and (29: 4) n is the number of intervals on each

side of Xo.

30. Remainder Terms in Bessel's Formulas. The remainder term

in Bessel’s formulas is derived by first writing down the arbitrary

function

(30: 1) F(z) m /(*) - +(s)

- [/(*) ~ *(*)]
(z - »o)(g — Xi)(z - X-i) • •

• (z - xn)(z - x_)(z - xn+1)

(*-*<>)(*;-

*

i)(#-*-0 • • (*-*»)(*-*-»)(*- *«+i)

This function vanishes at the 2n+_3 points s»», x0 , xi, x_i,
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*_», xn+i. Since </>(£) is a polynomial of degree 2n+l, its {2n+2)th

derivative is zero . Hence on differentiating (30: 1) 2n+2 times with

respect to z and putting F(2n+ *) (z) =0 for some value z = £, we get

0 = /<*"+»({) - 0

- [/(*)-*(*)]
( 2» + 2)1

(x-

x

0)(x— x l)(x-x- l) (x—xn)(x— *_„)(*— *n+l)

from which

/( *B+2)
(f)

f(x)-4>(x) =— —

—

(x-XoXx-xJix-X-i) (X-Xn)(x-X-n)(x-Xn+l),
(2n + 2)!

or

(30: 2) Error= if

„

/<*"+s
>(£)—

—

(x-xt)(x-xi)(x-x-i) (x- XrXx-X-»)(x-Xn+ 1).

(2»+ 2)!

Putting x—x0 = hu, x— xi = h(u—l), x— *_i = h(u+ 1), etc., as in the

case of Stirlirg’s formula, we get

hWifl2n+2)(t)

(30:3) Rn=— ——«(«- l)(w+l)(w-2) •
• (m-»)(«+«)(m-»-1).

(2n + 2)!

This is the remainder term in formula (IV) of Art. 19. In terms of

differences it becomes

(30: 4) 2f„ = ~ D(« + D(« ~ 2)(« + 2)

-••(«- »)(« + »)(« - n — l),

where

Win+2 =
A 2"+iy_„_ v + A5"+ !y_„

On putting «=»+$ in (30: 3) and (30: 4), we get

_ r^2 _iy.. {2n+ 1)T
s

),(30: 5)

(30: 6) R,

R* =
(2n + 2)

m'n+'
- (v> - -)(** --) •(»’-

(2»+ 2)!\ 4 / \ 4/ V

(2»+l)
->

These are the remainder terms in formula (VI) of Art. 19.

Putting «s0 in (30: 5) and (30: 6), we get the remainder terms in

the formula for interpolating to halves, namely
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(30: 7) Rn

(30: 8) Rn

[1-3-5 • • •• (2» + 1)
]*

(2» + 2) !
2*»+l

mw . »+. [1-3-5 • •
• (2w + 1)]*

(2« + 2) !

'
2in+1

31. Recapitulation of Formulas for the Remainder. We now collect

for easy reference the most important of the formulas derived in this

chapter.

1. Newton's Formula (I)

(a)

(b)

Rn

Rn

hn+y(«+»({)

(»+!)!
«(« — l)(w — 2) •••(« — «).

A"+Iy0

(*+1)1
u(u - 1)(« - 2) •••(«- »).

2. Newton's Formula (II)

(a)

(b)

(«+ D!
«(« + 1) («+ 2) •(« + *)

.

u(u + 1)(« + 2) •••(« + n)

.

n-j-1 !

3. Stirling's Formula, (III)

ftln+lfdn+D/p)

(a) Rn = —
;

~ H(w2 - 1)(«* - 2*)(«* - 3*)

(b) R

(2» + 1) I

tthn+l
«(«* - l)(w* - 2 S)(«* - 3 l

)

(2» + 1 )

!

4. Bessel’s Formula in terms of u, (IV)

**»+*/(*»+*>($)

(a) Rn " -*(*- l)(*+l)(*-2)

•••(«*- »*).

(a* - ns
).

(b)

(2» + 2)

!

*»*•+»
«(«-!)(« +!)(«- 2)

(2» + 2)1

5. Bessel’s Formula in terms of v, (VI)

•(«— »)(«+»)(«— »— 1).

(« — »)(«+ »)(«— « — l).

« •‘-btsX'-tX'-t)'
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6 .

(a)

Formula for Interpolating to Halves, (V)

n+ , [1-3-5 ••• (2n + 1)]*

" (2» + 2)!
J

22b+*

(b)
Wtn+t . ,»+i ^ '3-5 • •

• (2n -f- l)]4

(2« + 2)r 2^«

7. Lagrange's Formula, (VII)

/<»+«>({)

Rn = -7—r-rrr(* ~ *o)(x - *i)(* - x2)
• •

• (x - x„).

(« + 1)1

Where the formulas are given in pairs, the second form (b) should be

used when the analytic form of the function is not known.

To lessen the labor of computing Rn from these formulas the student

should, when possible, use the expressions for the nth derivatives given

on page 33.

It is not worth while to compute the remainder term in many ap-

plications of Newton’s, Stirling’s, and Bessel’s formulas, because if

the starting point is so chosen that u and v are numerically less than 1

and if the differences of some order are practically constant, the in-

terpolated result will usually be correct to as many figures as are given

in the tabular values of the function. This statement is based on the

assumption that all available differences are used in the interpolation

formula, or at least all differences which will contribute anything to

the last figure retained. It is in those cases where the differences do not

become constant or where it is impracticable to make use of differences

above a certain order that we should compute the remainder term.

When using Lagrange’s formula, however, the case is very different.

Here there are no differences available and there is nothing in the

formula itself by which we can estimate the reliability of the results

obtained. We should therefore compute the remainder term in every

application of this formula.

The student should observe that the remainder term in Stirling’s

formula contains odd differences, whereas in Bessel’s formula it contains

even differences. If, therefore, when using a central difference formula

we stop with even differences and wish to estimate the error, we should

use Stirling’s formula, whereas if we stop with odd differences we should

use Bessel’s formula. If this rule is followed, the remainder term will

always be the next term after the one at which we stop.

There should never be any difficulty in determining the proper value

of n to be substituted in the remainder formulas. Thus, if we are using

Bessel’s formula and stop with third differences, the remainder term
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will contain fourth differences. Hence we must have 2«+ 2 = 4or»*=l.
On the other hand, if we are using Stirling's formula and stop with

fourth differences the remainder term will contain fifth differences.

Hence we shall then have 2n+ 1 = 5 ,
from which n = 2.

We shall now compute the remainder term in an application of Bessel’s

formula.

Example . The following table contains values of the function

y =x*+ IOjc6 for certain values of x . Find y when x = 2.27.
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Hence
f
iv

(£) = 24 + 1200$.

Now since $ lies somewhere between 2.0 and 2.5, we can express it

in the form

$ = 2.25 + 0.1,,

where , lies between —2.5 and +2.5. Substituting this value of $ in

/1V
($) above, we get

/
iv
(£) = /

lv(2.25+0. 1,) = 24 + 2700 + 120,

= 2724 + 120,.

Hence by (30:5) we have

(0. 1)
4(2724 + 120,)

24
(0.04 - 0.25)(0.04 - 2.25)

= 0.00527 + 0.000232,

= 0.00527 ± 0.00058.

We therefore have

y = 629.28609 + 0.00527 ± 0.00058

= 629.29136 ± 0.00058.

The value of y is thus between 629.2919 and 629.2908, or between

629.292 and 629.291. The correct value to four decimal places is

629.2914, and this happens to be the mean of the two limits found above.

If we substitute differences instead of the derivative in Rn , we have

W2n+j — 7W4 — (0.2664+ 0.2784)/2 = 0.2724 ;
and therefore by (30:6)

0.2784

24

= 0.00527

(0.04 - 0.25)(0.04 - 2.25)

which is the definite part of the remainder term found by using the

derivative. We then have y = 629.28609+0.00527 = 629.29136, which

is correct to four decimal places.

Note. The substitution $= *m +/t,, where xm denotes the mid-point

of the range of given values of the function, gives the remainder as the
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sum of two terms, the larger of which is perfectly definite and un-

affected by the uncertain factor 77. It also saves the trouble of finding

the greatest and least values of/iT
(*) in order to find the limits between

which the true value of the computed function lies. For Newton’s

formulas (I) and (II) we make the substitutions £=*o+J»j and

£=jVn— ht), respectively, where 17 is now positive in each case. For

computing 2?» in Lagrange’s formula we should put Z — xm +hii, as in

the example worked above.

A final remark concerning accuracy must now be made. When the

analytical' form of a function is totally unknown, and the sum total of

our knowledge of the function consists merely of a set of tabular values

of the argument, the problem of interpolation is really indeterminate;

for it is theoretically possible to construct a large number of functions

which would take the values ya , yi, >’2, • y« corresponding to the values

*o. *i» *21
• • • *» of the argument. Nevertheless, if we have some

knowledge of the nature of the function with which we are dealing

and have no reason to believe that it behaves in an erratic manner with-

in the range of values considered, we may fairly assume that its graph

is a smooth curve, in which case the function can safely be replaced

by a polynomial.

32. The Accuracy of Linear Interpolation from Tables. We shall

now derive a simple formula for the maximum error inherent in linear

interpolation from tables.

In the remainder after w+1 terms in Newton’s formula (I) let us

put n — 1. Then Rn becomes

(32: 1) Ri =
hT(t)

2
u{u — 1)

h 2M
2

(m2 - «),

where M denotes the maximum absolute value of f"(x) in any interval

of width h. To find the maximum numerical value of Ri we differentiate

it with respect to «, put the derivative equal to zero, solve for «, and
then substitute this value of u in (32: 1). Hence we have

dR 1

du

h2M~
2

~
(2« - 1 ) 0 .

u — \ and

h*M

~T~
The formula for the maximum error is therefore

(32:2)
k*M
~8~
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Example. The function 1/ATis tabulated in Barlow’s Tables at unit

intervals from 1 to 10000. Find the possible error in the linear in-

terpolation of this function when

Solution.

N = 650.

f(N)

/"(A0

~N

2

N*'

Taking h — 1, N= 650, and substituting in (32: 2), we find

1 1

E £ = ,

4 X (650)* 1,098,500,000
or

E < 0.000000001.

Note. The student should ever bear in mind that linear interpolation

is permissible only when first differences are constant, or practically so.

He should therefore always compute a few first differences and see if

they are constant before using linear interpolation.

EXAMPLES ON CHAPTER V

1. Estimate the error in your answers to Examples 3 and 4 of Chapter

II.

2. Compute the error in your answers to Examples 2, 3, 5, and 6 of

Chapter III.

3. Compute the error in your answers to Example 1 of Chapter IV.



CHAPTER VI

INTERPOLATION WITH TWO INDEPENDENT VARIABLES
TRIGONOMETRIC INTERPOLATION

33. Introduction. Occasionally it becomes necessary to interpolate

a function;of two arguments. For example, a table of elliptic integrals

contains the two arguments 6 and <f> ,
on both of which the value of the

integral depends.

The problem of double interpolation can be solved in two ways. The
simplest method in theory is to interpolate first with respect to one
variable and then with respect to the other. In making these interpola-

tions any one of the standard interpolation formulas—Newton's,
Stirling's, or Bessel's—may be used for either the first interpolations

or the second. We always choose the most suitable formula for the

problem at hand.

34. Double Interpolation by a Double Application of Single Interpola-

tion. This method can be explained best by means of examples.
Example 1 . The following table* gives the hour angle (/) of the sun

corresponding to certain altitudes (a) and declinations (d

)

at a place

in a certain latitude. Find the hour angle corresponding to d=12°,
a = 16°.

a = 10° 14° 18° 22°

d =20° 6h 11” 26- 5h 50“ 17- 5 h 29“ 27- 5h 8“ 48-
15° 5 55 41 5 35 5 5 14 39 4 54 17
10° 5 40 16 5 19 56 4 59 37 4 39 17
5° 5 24 50 5 4 30 4 44 4 4 23 29
0° 5 9 5 4 48 29 4 27 39 4 6 28

Solution . Here we take the entry 5 h35m5 s as the starting point.

Then the initial values of d and a are d 0 = 15°, a 0 = 14°.

Let /=/(d, a) denote the functional relation connecting t, d, and a.

We first find by ordinary interpolation the values of /(12°, 14°),

/(12°, 18°)
f /(12

0
,
22°). To this end we construct the following difference

tables corresponding to a = 14°, a = 18°, and a = 22°.

• A table of this kind is called the function table . The entries in this table are taken
from Whittaker and Robinson’s Calculus of Observations

, p. 374.

96
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o-14°

M 14°) A./ Ay

5" 35“ 05*

-15“ 09*

5 19 56 -17'
-15 26 — 18*

5 04 30 -35
-16 01

4 48 29

a -18*

M 18°) A/ Ay A'/

5h 14“ 39*

-15“ 02*

4 59 37

-15 33

-31*

—21*

4 44 04
-16 25

-52

4 27 39

a -22*

Since the required value /(f2°, 16°)|of the function is near the

beginning of the assigned values of d, we use Newton’s formula (I) to

find /(12°, a). Furthermore, since the given equidistant values of d

decrease by steps of 5°, we have h =* — 5° and therefore

d - d* 12-15

Now substituting in (I) of Art. 15 this value of « and the other quan

tities from table (a) above, we have
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„ „ 0.6(— 0.4)
/( 12° 14°) = Sh35m5" + 0.6f- 1S™9") H - (- 17»)

= 5 h26m I*.

Using the values in table (b), we get

f{ 12° 18°) = 5 h 14m39* + 0.6(— 15m2") +
0.6(— 0.4)

(- 31-

0.6(-0.4)(- 1.4)
+ (- 21 s

)

= 5 llSm40*.

In like manner, from table (c) we get

„ 0.6(— 0.4)
/( 12°, 22°) = 4h54m 17“ + 0.6(— 15m0‘) -\ - (- 48-)

0.6(— 0.4)(— 1.4)
+ -(- 25-)

= 4h45n’21’.

The next step in the solution is to form a difference table of these

functions just computed. Hence we have

f(12, a) A/ A*/

5h 26m 1-

— 20m 21-

5 5 40 +2-
-20 19

4 45 21

Now since the required value of the function is also near the beginning

of the assigned values of a

,

we again use Newton’s formula (I). Also,

since the equidistant values of a increase by 4°, we have h = 4°. Hence,

« 0 . 5 .

Substituting in (I) of Art.' 15 this value of u and the other quantities

from the tables above, we finally get
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/(12°, 16°) - 5h26ml* + 0.5(— 20-21*) +
°‘ 5( °’ 5)

(2*)
2

= 5h 15-50*.

Note. If it should be required to compute /(14°, 20'1

), for example,

we would set out from the entry 5h55-41* and compute /(14°, 10°),

/(14°, 14°),/(14°, 18°), and/(14°, 22°) by Newton's formula (I). Then
to find /(14°, 20°) we would use Newton’s formula (II), because the

required value is near the end of the given values of a.

Example 2. Find from a table of elliptic integrals the value of

J

>aiu-l(lt/ll)

o VI — 0.78 sin* p

Solution. Comparing this integral with the standard elliptic integral

of the first kind, namely

J
'+ dp

=====
o Vl — sin* 0 sin* p

we have
12

p = sin-* — = sin- 1 (0.9230769) = 67°22'48'.5
13

= 67°.38014.

sin* 0 — 0.78,

sin 0 = 0.8831761,

0 = 62°01'40\4 = 62°.02789.

In problems of this kind, where extensive tables are at hand, it is

better to use central-difference formulas. Hence we write down the

appropriate portion of the given function table, compute the necessary

difference tables, and from them calculate the values of F(60°,

67°.38014), F(61°, 67°.38014), F(62°, 67°.38014), F(63°, 676.38014),

and F(64°, 67°.38014) by means of Bessel’s formula (VI), because

67°.38014 is near the middle of an interval. Then we form a difference

table from these computed functions and find F(62°.02789, 67°.38014)

by means of Stirling’s formula, (III), because here the value 62°.02789

is near the beginning of an interval. •

The function table is given below, and from’ it the difference tables

following are computed.
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* WBM 61
° 62* 63° 64*

65
° 1.3489264 1.3559464 1.3630180 1.3701309 1.3772732

66 1.3772777 1.3847727 1.3923331 1.3999481 1.4076057

67 1.4059999 1.4139971 1.4220753 1.4302236 1.4384293

68 1.4350955 1.4436231 1.4522494 1.4609635 1.4697532

69 1.4645657 1.4736530 1.4828589 1.4921728 1.5015826

70 1.4944109 1.5040879 1.5139061 1.5238552 1.5339233

0- 60
°

0- 61
*

(a)

(b)
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0-62*

0=64"

(c)

M)

(e)
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*0 . 67°, <t>
= 67°.38014, h - 1°,

u = 0.38014.

v = u - h = ~ 0.11986.

Substituting in Bessel’s formula (VI) the quantities given in table

(a), we have

F(60°, 67°.38014) = 1.4205477 - 0.00348740 - 0.00004408

+ 0 . 00000001 - .0 . 00000003

= 1.4170162.

In a similar manner we get from tables (b), (c), (d), («),

F(61°, 67°.38014) = 1.4252117,

F(62°, 67°.38014) = 1.4334946,

F(63°, 67°.38014) = 1.4418540,

F(64°, 67°.38014) - 1.4502779.

Forming now a table of differences from these computed functions,

we have

e F(e
t
67°.38014) AF A*F

|

A*F
|

&F

60° 1 .4170162

81955

61 1.4252117

82829

874

— 109

62 1.4334946

83594

765
-

-120
-11

63 1.4418540

84239

645

64 1 .4502779
:

For this interpolation we have

0o - 62°, 0 = 62°.02789, h = 1°.

0-0o 62°.02789 - 62°
« * —-— 0.02789.

h l
e

Substituting in Stirling’s formula, (III), this value of « and the

appropriate quantities from the table above, we get
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F(62°.02789, 67°.38014) « 1.4334946 + 0.00023208

+ 0.00000003 + 0.00000005

= 1.4337268.

35. Double or Two-Way Differences. Before explaining the second

method of dealing with the problem of double interpolation it is neces-

sary to define double or two-way differences, to which we now turn our

attention.

Let z=/(x, y) denote any function of two independent variables x

and y t
and let zra =f(xr , y$). Let us next construct the following function

table:

Xo n *2 *3 X< xm

yo Z00 Zio Z2 0 Z$0 z40 . ZmO

yi Zoi z 11 Z21 Z31 Z41 Zml

yi Z(

n

Z12 S22 Z32 242
. . .

Ztnl

y* z03 2(3 223 S33 Z43 Zml

y

i

z04 ZM

.

Z24 Z34 Z44 « •

. . .

Zm4

yn z On Zln Zin Z3n Z4 ,I Zm»

We now define double or two-way differences as follows:

A 1+0
300 = A xZoo = 2io ““ Zoo,

A 1+02qi = AjZoi = 2u ~ Z01 ,

A*"^Zq2
= A x2 o2

= *12 2q2 j

A^Zoo = AyZoo = 2oi 2oo>

A^'zio = AyZio = 2u Zio,

A°^ lZ20 “ A yS^20 = Z2I — 220

*

Or, more generally,

A'^^rt = A x*>ra
= Zr+ l,

a

2 r*»

A°"^Zr*
= AyZrg = 2r ,a-f 1 2r* •

A 1+1z00 = AxyZoo = A1+0
2oi - A 1+0

Zoo

- Ac+,
Zio - A^zoo.

Also
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A^^oo “ A,’ *oo * >10 — 2>n + *oo,

A*+0
*oi A,1 *oi m >ii — 2*n + *oi,

A*+#*oi *= A *
1
>oi *= >ii — 2*ii + *oi,

A^Zoo = Ay
s
>oo * >oi — 2>oi + *oo,

A^^io * Ay* >io = >it — 2*n + *io,

A^’ZJO “ Ay* >20 * >11 — 2*11 + *10,

_A*+,*oo = A,+0
*oi — A1+0

*oo,

A,+,
*oo = A*^"*Zio — A®^"**oo,

A^^oo = A x* >oo * *io — 3>io "I
-
3*io — *oo,

A*+°>oi * A** *oi - >n - 3>n + 3zu - *oi,

A^'zoo * Ay* >oo = >oi — 3>oi + 3*oi
—

*oo,

A^'zio “ Ay* >io = >ii — 3>ii + 3*n — >io,

A^Zoo — A’+^oi — A*+#*oo,

A1+,
*oo *= AMZio — A^’zoo,

A*"*"°>oo = Ax4 >oo ~ *40 — 4>io -|- 6>2o — 4>io >oo,

A®4"4
*!! = Ay4 >00 = >04 “ 4*03 "l” 6*02 — 4>01 "4* >00,

A’+’*0o = A«-°>01 — 2A,+0*oi *f* A*+
0
*oo,

= A«-*>io - 2A°+**io + A^-^oo.

The general formula for writing down these differences is easily seen

to be

«(« — l)

(35: 1) A*+*>oo — A"*®*®* — nAB+0Zo,R_\ —A**4-4
*®,*-! -V * •

2
*4* A^zoo

m(m — 1)
A44aiS| — «A0+

**«_i,o "f ” A®4'“>*y_i io
2

+ Aw‘**oo-

The symbolAJ**oo, for example, means that we find the mth difference

of >oo with respect tox,y being held constant.

36. A General Formula for Double Interpolation. We are now in a

position to consider a general formula for double interpolation. The
following formula is derived in O. Biermann’s Mathematische NaherUngs-

methoden, pages 138-144:
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(36: 1) * - /(*, y) « z0o + ^A‘+«*00 + ^A^soo
h k

1 f(*
- xo)i* - Xx) 2(x - x0)(y - y0)— A*+Ozoo H A1+1*0o

2!i_ A* AA

(y- yo)(y- yi) A11J_,
"|

,

H — AO+^ooJ + • • •

i r(* - *0)(* *«_i)
A'*fo*oo

*»(* ~ x0)(x - jQ •
•

• (s - a:»-a)(y - y0)

A"-*A
A(—1)+»,

0#

m(m - 1) (* - *0)(x — *i) • • •(* - *»-»)(y - yo)(y - yx)

A—*A*

X A (~-I)+
*2oo “f"

,
(y - yo)(y— yO • •

• (y-y.—i)..
H A'H‘*'Zoo
km J

+ R(x0, y0).

Here A and A are the intervals between the equidistant values of x
and y, respectively, and i?(*o. yo) is the remainder term.

This formula can be simplified by changing the variables from x and y
to u and v, as follows:

Put

Then

* — *o
u =———

>

or x = xo + A«.

x — Xx x — (*0 + A) x — Xo A
« - 1 ,

* — *j * — (*o + 2A) x — *o 2A
« — 2 ,

* — *»-i
= «-(«- 1).

Also, put

Then

y - yo
, .

« «—
^
— > or y >= yo + An.

y - yi y - (yo + A) y - yo A
as s* — — * ¥ “ I,

A A A A

y - yi

v — 2, etc.
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Substituting these values of (x—Xo)/h, (y—yo)/k, etc. in (36:1), we get

(IX) z = f(x, y) = f(xo + hu, y0 + kv) = z00 + wA1+0z00 + »A0+,z0o

H [«(« — l)A2+0Zoo + 2mdA1+1
Zoo + v(v — ljA^Zoo]

2 !

H [«(« — 1)(« — 2)As+0Zoo + 3«(« — l)»AI+1Zoo
3!

J- 3uv(v — l)A I+2
Zoo + v(v — l)(t> — 2)A0+sZoo]

H [«(M — 1)(M — 2)(« — 3)A4+0Zoo + 4m(m — l)(w — 2)uAH,zoo

4! «

+ 6«(« — l)z>(z; — l)A2+2z0o + 4uv{v — 1)(» — 2)A 1+,
Zoo

+ v(y — 1)(» — 2)(v — 3)A‘H
'4z0o] + • • • .

This formula (IX) corresponds to Newton’s formula (I) and reduces

to that formula if we put either u = 0 or v— 0.

We shall now apply this formula to the two examples which have

already been worked by the first method.

Example 3. Solve Example 1 of Art. 34 by means of formula (IX).

Solution. For the sake of clearness we repeat the function table

given in Example 1, and work the problem anew from the start.

d £ II o 18° 22°

15° 5h 35m 5a 5h 14 ro 39" 4h 54“ i7"

10° 5 19 56 4 59 37 4 39 17

5° 5 4 30 4 44 4 4 23 29
0° 4 48 29 4 27 39 4 6 28

Forming next the necessary difference tables, we have

«o= 14°
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ai = 18°

Oj*22°

These three tables, it will be observed, are the same as tables (a),

(6), (c) in Example 1.

We next form difference tables by taking constant values of d.

<fo“15°

/o. A** 1
/*, A‘+V*

<*0 5b 35“ 5-

-20“ 26"

at 5 14 39 +4*

-20 22

<h 4 54 17

di«10°



108 INTERPOLATION—TWO INDEPENDENT VARIABLES [Chap. VI

*-5*

fta A0+1
/i»

0ft 5h 4“ 30*

1 ©B

Oi 4 44 4

-20 35

-9s

<h 4 23 29

Hence.

Al+1
/oo = A1+0

/oi - A1+0
/oo = - IS "2* - (- 15“9«) = T,

A1+
*/oo “ A°+*/10 - A^Voo - - 1* - (4‘) = - 5',

Aw/n = AI+#
/oi “ A*+°/oo = - 31* - (- 17*) = - 14*,

A1+
*/oo = Am/io - A«-*/oo = 0-0 = 0,

A*+‘/oo * A*+«/0l - A*+0/oo = - 21* - (- 18') = - 3%

A*+*/«0 = A»«/0, - 2A*+e
/01 + A*+»/oo

= - 48' - 2(— 31*) + (- 170 = - 3',

A«+"/0« = 0,

A«-4
/oo - 0.

We bave already found in Example 1 that

u = 0.6, v = 0.5.

Substituting in (IX) these values of u, v, and the computed differences,

we get

/(12° 16°) = 5h35“5‘ + 0.6(- 15“9*) + 0.5(- 20“26*)

+ §[0.6(- 0.4)(— 170 + 0.6(70 + 0. 5(— 0.5)(40]

+ H0-6(- 0.4)(— 1.4)(-180 +0.9(- 0 . 4)
(— 140

+ 0.9(— 0.5)(— 50+0]

+ £[0+1.2(— 0.4)(-1.4)(— 30+1.8(— 0.4)(— 0.5)(-30

+ 0 + 0 ],

or/(12°, 16°) = 5h15 B‘50*
,
as previously found.

Example 4. Solve Example 2 by means of formula (IX).

Solution. Since (IX) is not a central-difference formula, we do not

use the same function table as in Example 2. From the definition of

the two-way differencesA "+ns0o it will be seen that the following triangu-

lar function table, starting from F(62°, 67°), is all that is required for

finding ail differences up to the fourth order inclusive.
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4 0-62° 63° 64° 65° 66°

67° 1.4220753 1.4302236 1.4384298 1.4466803 1.4549598

68 1.4522494 1 .4609635 1.4697532 1.4786046

69 1.4828589 1.4921728 1.5015826

70 1.5139061 1.5238552

71 1.5453920

The following difference tables are next computed

:

9.-62°

ft* A0+lF<* A**F*

00 1.4220753

301741

01 1.4522494

306095

4354

23

01 1.4828589

310472

4377

10

-13

01 1.5139061

314859

4387

04 1.5453920

9,-63°

ft* Ai+1
.Fi* A^**JFi4

00 1.4302236

307399

01 1.4609635

312093

4694

37

01 1.4921728

316824

4731

0« 1.5238552

9.-64°

• ft* A*+»ft*

4. 1.4384298

313234

4i 1.4697532
318294 •

5060

4* 1.5015826
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*o=67°

Feo A1+»F*o A”*Fbo A»+"F.o A*+*Feo

00 1.4220753

81483

0i 1.4302236

82062

579

-146

02 1.4384298

82505

433

-143
3

03 1 T4466803

82795

290

04 1 .4549598
i

-68°

Ftl A>+"F», A*+*Fei A>+»F»1

0o 1.4522494

87141

i

0i 1.4609635

87897

756

-139

02 1.4697532

88514

617

0. 1.4786046

*=69°

Fh A 1+,F(j a>+°fm

0o 1.4828589

93139

0i 1.4921728

94098

959

02 1.5015826

Hence

A1+1F0o * A‘+°Foi - A*+°Foo = 87141 - 81483 = 5658,

A1+*F0o = A*+2Fi 0 - A°+2F0o = 4694 - 4354 = 340,

A*+1Foo - A!+°F0 i - A!+0Foo = 756 - 579 = 177,

A1+,Foo = A°+*Fio - A°+»F0o = 37 - 23 = 14,

A^Foo = A*+0Foi - A’+’Foo = - 139 - (- 146) = 7.

A2+
*Foo = A2+0F«2 - 2A2+#Foi + A2+0F0o = 959 - 1512 + 579

= 26.
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In Example 2 we found m = 0.02789, v= 0.38014. Substituting in (IX)

these values of u, v, and the computed differences, we get

F(62.°02789,67.°38014) = 1.4220753 + 0.02789(81483) +0.38014(301741)

+ H0.02789(- 0 . 9721 1)(579) + 2(0.02789)(0.38014)(5658)

+ 0.38014(— 0.61986) (4354)]

+ i[0.02789)(- 0. 9721 1)( — 1.972J 1)(— 146)

+ 3(0.02789)(— 0.97211)(0.38014)(177)

+ 3(0.02789)(0.38014)(— 0.61986)(340)

0.38014(— 0.61986;(- 1.61986)(23) ]

+ ^[0.02789(- 0.97211X- 1.97211)(- 2.97211)(3)

+ 4(0. 02789)(— 0.97211H— 1 . 972 1 1 ) (0 . 3801 4) (7)

+ 6(0.02789)(— 0.97211)(0.38014)(— 0.61986)( 26)

+ 4(0.02789)(0.38014)(— 0.61986)(- 1.61986)(14)

+ 0.38014(~ 0.61986)(- 1.61986)(- 2.61986)(- 13)]

= 1.4337264.

This value differs from that found in Example 2 by four units in the

last decimal place; but in view of the fact that different parts of the

function table, different formulas, and different methods were used

in the two computations the agreement is as close as could be expected.

The remainder term in formula (IX) is

1 rd n+1
/($, v)

(36: 3) *„(*<,, y„)
= — 7—7 ~h n+'u{u - 1)(« - 2)

• •
• (« - »)

(«+l)!L dzB+1

dn+lf(l>v)
+ (n + 1) 5 hnku(u — 1)

• •

• [k-(* — l)]t>

dxndy

+ — — 1-” ~~hn
~ 1kt(u)(u - 1) -[«-(«- 2) ]v(v - 1)

2! Sxn xdy*

+ . .
. + I^kn+lv(v - l)(t - 2)

• •
• (V - »)1,

dy"+1 J

where f and ij are mean values of * and y in t(ie region considered.

The formula for Rn in terms of differences is
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(36: 4) Rn(x0 ,y0) = ,
*; —

,

[«(« - 1)(« - 2)
• •

• (« - »)A<«+lJ+"*oo

* (»+l)l

+ (» + 1)«(« — 1)(« — 2) •••[« — (» — l)]®A"+t«og

(tt -4- 1

W

H «(«— 1)
• • •[«—(«— 2) ]»(«— l)A (*-1)+

**oo
2

1

+ ••+»(» — 1)(» —.2) • •
• (t> — »)A#+("+1)*oo].

Note. The two methods explained in this chapter are sufficient for

the solution of all ordinary problems of double interpolation. As to

which of these methods is preferable, it may be said that the use of

formula (IX) is probably shorter if all differences above the second

are negligible.

For a more extensive treatment of double interpolation the reader

should consult Steffensen’s Interpolation, pp. 203-223, and Tracis for

Computers No. Ill, Part II, by Karl Pearson.

37. Trigonometric Interpolation. When the function we desire to

represent by an interpolation formula is known to be periodic, it is

better to use trigonometric interpolation. Hermite’s formula for

interpolating periodic functions is

sin (x — *0 sin (* — **)••• sin (x — x„)

y = y0

sin (x0 — Xi) sin (x0 — x») • • • sin (x0 — x„)

sin (x — Xo) sin (x — x2)
• • sin (x — x„)

_| y l

sin (xi — xo) sin (xi — x2)
• • sin (xi — x»)

sin (x — Xo) sin (x — Xi) • • • sin (x — x«_i)

sin (x» — xo) sin (x„ — Xi) • • • sin (x« — x,_i)
y*

This function has the period 2x, as may be seen by replacing x by
x+2r. It is evident also that y=y0 when x=x0 , y=y

i

when x=xu etc.

This formula of Hermite’s for periodic functions corresponds to

Lagrange's formula for non-periodic functions (Art. 21), and applies

whether the given values of x are equidistant or not. By interchanging

x and y in Hermite’s formula we get a formula for the inverse interpola-

tion of periodic functions, corresponding to (VIII) of Art. 21.

Example. Given the following corresponding values of x and y,

find the value of y corresponding to x=0.6, the values of x being in

radians:
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Solution. Here *0 = 0.4, *i= 0.5, *j = 0.7, *» = 0.8, * = 0.6.

tuting these values in the formula

sin (* — *i) sin (* — *2) sin (* — x»)

we get

or

y - yo

y =

sin (*o — *i) sin (*0 — *j) sin (*0 — **)

sin (* — *o) sin (* — **) sin (* — **)
H y x

sin (*! — *0) sin (*i — *2) sin (*i — **)

sin (* — *o) sin (* -- *0 sin (* — *»)

sin (*j — *0) sin (** — xi) sin (*j — **)

sin (* — *o) sin (* — *0 sin (* — Xt

)

sin (*j — *o) sin (** — *i) sin (*j — **)

sin (0.1) sin (— 0.1) sin (— 0.2)
(0.0977)

(0.0088)

y*

y«,

sin (— 0.1) sin (— 0.3) sin (— 0.4)

sin (0.2) sin (— 0.1) sin (— 0.2)

sin (0.1) sin (— 0.2) sin (— 0.3)

sin (0.2) sin (0.1] sin (— 0.2)

sin (0.3) sin (0.2) sin (— 0.1)

sin (0.2) sin (0.1) sin (— 0.1)

(- 0.1577)

(- 0.2192),
sin (0.4) sin (0.3) sin (0.1)

- 0.01684 + 0.00592 - 0.10601 + 0.03778

0.07915.

Substi-

Thisvalueagreeswith that found bynumerical integration on page 242.

The computation in this problem is conveniently performed by

logarithms, the log sines being given directly in the Smithsonian

Mathematical Tables,
Hyperbolic Functions, Table III.

Note. The problem of trigonometric interpolation was first solved by

Gauss,* who derived several formulas similar to Hermite’s. The formula

usually
4
called Gauss’s formula differs from Hermite’s only in having

the factor § written in front of all the angles; thus, sin $(*— *o) etc.

It is believed, however, that Hermite’s formula is simpler than any

of the Gauss formulas.

EXAMPLES ON CHAPTER VI

1. Using the data of Example 1, Art. 34, find by two methods the

hour angle of the.sun when a= 12° and d = 16°.

2. Using the short table of elliptic functions given in Example 2,

Art. 34, find F(fi, <j>) by two methods when 0=d0°37
/40

,/

, $= 66°17 52'f
.

* Werke, Band III, pp. 265-327.



CHAPTER VII

NUMERICAL DIFFERENTIATION AND INTEGRATION

I. NUMERICAL DIFFERENTIATION

38. Numerical Differentiation is the process of calculating the deriva-

tives of a function by means of a set of given values of that function.

The problem is solved by representing the function by an interpola-

tion formula and then differentiating this formula as many times as

desired.

If the function is given by a table of values for equidistant values of

the independent variable, it should be represented by an interpolation

formula employing differences, such as Newton’s, Stirling’s, or Bessel’s.

But if the given values of the function are not for equidistant values of

the independent variable, we must represent the function by Lagrange’s

or Hermite’s formulas.

The considerations governing the choice of a formula employing

differences are the same as in the case of interpolation. That is, if we
desire the derivative at a point near the beginning of a set of tabular

values, we use Newton’s formula (I). Whereas, if we desire the

derivative at a point near the end of the table, we use Newton’s formula

(II). For points near the middle of the table we should use a central-

difference formula—Stirling’s or Bessel’s.

The values of derivatives in terms of differences may also be found

by means of those interpolation formulas which employ differences.

Thus, from Stirling’s formula we have, since

x — Xq dy dy du 1 dy
u — and — ;

h dx du dx h du

Ay_i + Ay0 u2 u(u2 — 1) A 3
y_ 2 + A%y_ t

v - » + ”
I
— + +—31

u-(u- — 1) «(mj — 1)(« 2 — 2 !
) ..i + Asv_j

-| A H — 1—
4! S! 2

«*(m* - 1)(«4 - 2 2
)

-| A'y.j + •
• ,

ol

114
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dy 1 TAy-i + Ay0
, .

3m* — 1 A’y_i + A*y_
1 + ttA*y_i +

dy _ 1 p
dx h L

4«* — 2u
+ —AV* +

4!

6m* - 20«* + 8m

3! 2

5m4 — 15m* + 4 A‘y_*+ A*y_*

5!

6!
A*y_j +

]•

d'y ifAt -— = —I A*y_i + m
dx* A*L

A’y-j + A*y_i 12m* - 2
A 4

_y_*

2 4!

20m* - 30m A*y_j + A‘y_* 30m4 - 60m? + 8

5!
+ •

6 !

A*y_» + ]
d*y 1 fA*y_*4- A*y_i 60m1 — 30 A*y_» + A‘y_*— h «A4

y_j +
dx*

-ip
h* L 5!

120m* - 120m
H — A'y_» +

6! ].

d'y 1 T
= — A4y_t + m

dx 4 A 4 L 2

dl
y 1 rA*y_» + A fy_*

7x*
=

A*L 2

A*y_* + A‘y_2 360mj — 120
H A*y_* +

6 ! }

+ MA*y_2 + ]
d'y 1— s= — [A*y_j +
dx• h1

].

For the point x — xo we have m = 0. Hence on substituting this value

of m in the formulas above, we get

1 fAy_i + Ay0 1 A*y_2+A*y_i 4 A*y-t+A*y-2

2 3! 2 5! 2

(i?)„ f[a
’
5'-' - n4*

51- +
7i*

,y- +
• ]'

^
d*y^ 1 J^A*y_2

+ A*y_i 30 A*y_i + A‘y_2

}

vf**, 5!

(d*y\ 1 r 120 1

w), ' *[
4‘

5’-’ “ ^r
4*

5'- +
J'

/^y\ _
1 t~At

y-»

"
*»L

-» + A‘y_*

]
(d'y\ 1

te)„ *>
4,>- ).
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Evidently we can find the derivatives in exactly the same way by

differentiating Newton's, Bessel's, and Lagrange’s formulas.

To find the maximum or minimum value of a tabulated function we
compute the necessary differences from the given table, substitute them

in the appropriate interpolation formula, put the first derivative

of this formula equal to zero, and solve for u. Then x is found from the

relation x = Xo+hu.

We can also find the maximum or minimum value of a function by

equating to Zero the first derivative of Lagrange’s formula.

Example . Find the first and second derivatives of the function

tabulated below, at the point s = 0.6.
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found by numerical differentiation are therefore correct to five significant

figures in the case of the first derivative and to four significant figures

in the case of the second derivative.

It is to be observed ' that differentiation makes an interpolation

formula converge more slowly, just as in the case of a power series.

This is why the second derivative in the example above was correct

to one less figure than the first derivative.

The student should bear in mind that approximate differentiation,

whether numerical or graphical, is at best onl^ approximate and that a

high degree of accuracy is rarely attainable.

Partial derivatives of a tabulated function of two independent

variables can be found by differentiating partially formula (IX) of

Art. 36.

II. NUMERICAL INTEGRATION

39. Introduction. Numerical integration is the process of computing

the value of a definite integral from a set of numerical values of the

integrand. When applied to the integration of a function of a single

variable, the process is sometimes called mechanical quadrature ; when
applied to the computation of a double integral of a function of two

independent variables it is called mechanical cubature.

The problem of numerical integration, like that of numerical dif-

ferentiation, is solved by representing the integrand by an interpolation

formula and then integrating this formula between the desired limits.

Thus, to find the value of the definite integral Ja
ydx

,
we replace the

function y by an interpolation formula, usually one involving

differences, and then integrate this formula between the limits a and b .

In this way we can derive quadrature formulas for the approximate

integration of any function for which numerical values are known. We
shall now derive some of the simplest and most useful of the quadrature

formulas.

40. Quadrature Formulas in Terms of Equidistant Ordinates. In

Newton’s, Stirling’s, and Bessel’s interpolation formulas the relation

connecting x and u is

(40: 1) x = xq + hu ,

from which we get

(40: 2) dx — hdu .

Let us now integrate Newton’s formula (I) over n equidistant

intervals of width A(=Ax). The limits of integration for x are x0 and

Xo+nh. Hence from (40: 1) the corresponding limits for u are 0 and «.

We therefore have
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/.

zj+nh

ydx = h
/:(

«(« — 1) «(« — 1)(« — 2)
yo-fwAyoH ——A*y0 H — A*y0

2 ! 3!

«(« - 1)(« - 2)(« -3) «(« - 1)(« - 2)(m - 3)(« - 4)
H A H A‘y0

4!

«(« - 1)(« - 2)(« - 3)(« - 4)(« - 5)

H — A"y0 +
Oi

5!

^du,

or
A 2

y 0

/
*“+Bk r «* /«* «4

\i

yrfx = h |^My0 + yAyo *"
\ J 2/

(nK \A3
yo /»* 3n4 llns \A 4

>

V 4 / 3! \5 2 3 / 4!

/«• 35«4 50m* \A 5 vo

V 6 4 3 / 5!

/m7 15n* 225m 4 274»s \A*y 0l

V 7 6 4 3 / 6! J

+

+

From this general formula (40: 3) we can obtain several well-known

special formulas, as follows:

40a). The Trapezoidal Rule. Putting w = 1 and neglecting all

differences above the first,* we have

h
+ yi - yo] = —(yo + yi).

For the next interval from x\ to we have in like manner

r
*i

X,+ * h
ydx = —(yi + y*);

and so on for any number of intervals. For the Mth interval we have

fa

ydx * — (y„_i + y„)

.

*ir-l 2

Adding all such expressions as these from x0 to xn ,
we get

A

= y(y. + 2yi + 2y2 + • •
• + 2y„_i + y.)

* A^y + y! + y, + 1- yn-i + yj.

* Since we are integrating over the single interval bounded by the two ordinates

yoand y\ t it is not possible to obtain differences higher than the first.
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This formula is known as the Trapezoidal Rule . It is very useful for

computing a definite integral when the given values y<>, yu etc. of the

function are taken close together (that is, if the interval of width h is

small), and it is sufficiently accurate when the values of the function

are given to only two or three significant figures.

Geometrically the trapezoidal rule means that we replace the graph

of the given function by n segments of straight lines and that we replace

the area under the graph by that of a polygon, inscribed where the

graph is concave downward and circumscribed where the graph is

concave upward.

40b). Simpson's One-Third Rule. Putting n = 2 and neglecting all

differences above the second, we get

J
ydx = /z|^2y 0 + 2Ay 0 + — 2

= A[2y D + 2y x - 2y 0 + j(^a - 2y k + yo)J

h
= — (y 0 + 4y\ + y*).

For the next two intervals from r2 to xo+ 2

h

we get in like manner

f.

x2r2h
fo

vdx = —(v 2 + 4v 3 + v 4 ).

»

Similarly for the third pair of intervals we have

h
—(>'4 + 4y& + ye) <

and so on. Adding all such expressions as these from x 0 to x n . where n

is even, we get

h—(yo + 4y; + y 2 + y- + 4y 3 + >'4 + y \ + 4y„ + y6 + ),

or

(40: /
*o+ nh

ydx = —
( yo+4y i+ 2 y2+4y3+ 2 y 4+ • +2yn_ 2+4yn-i4-yn)

s. 3

= - [y0 + 4(v! + ya + • + + 2(y» + y* +
3

+ yn - *>) + y» 1
•

This important formula is known as Simpson's One-Third Rule. It

• probably the most useful of all the formulas for mechanical quadra-

ture.
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When using this formula the student must bear in mind that the

interval of integration must be divided into an even numbef of sub-

intervals of width h.

The geometric significance of Simpson’s one-third rule is that we
replace the graph of the given function by n/2 arcs of second-degree

parabolas.

40c). Simpson's Three-Eighths Rule. Putting n — 3 and neglecting

all differences above the third, we get

/
•*•+» * ' T 9 / 9\A*yo /81 \A*y 0l

..
- T* + t4>

+

(
9 -t)— +

(t
- 27+9)—

J

= A^3y0

9yi — 9y0 9
-I b ~(yt ~ 2yi + y«)

2 4

3 3h
+ —(ya — 3y» + 3yi — yo) — —(yo + 3yi + 3y* + y»).

8 8

For the next set of intervals from x=xa to x =xt we have in the same

way

f.

*• 3h
ydx = — (y 3 + 3y 4 + 3y 6 + yah

xt 8

Adding all such expressions as these from xo to x», where n is now a

multiple of three
,
we get

J
“*«+»* 3h

ydx = — [yo +[3yi + 3y 2 + 2y8 + 3y4 + 3yh + 2ye +
*• .

8

• • •+ 3y„_i + y„]

3A
= — [yo + 3(yi + y2 + y\ + ye + • * • + y»-i)

o

+ 2(yj + yt 4- • •
• + y«i-») + y»].

This formula is known as Simpson’s Three-Eighths Rule. It is inferior

to the one-third rule and is given here merely for the purpose of

comparing it later with the one-third rule. (Art. 47).

This formula replaces the graph of the given function by n/3 arcs of

third-degree parabolas.

40d). Weddle’s Rule. Putting n = 6 and neglecting all differences

above the sixth, we have

r 123
,

6y0 + 18Ayo + 27A*y0 + 24A«y0 +— A4
y0

33 41
f — A*ya H A*yo

10 140 .
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Here the coefficient of A differs from 3/10 by the small fraction

1/140. Hence if we replace this coefficient by 3/10, we commit an error

of only A*yo/140. If the value of h is such that the sixth differences

are small, thfe error committed will be negligible. We therefore change

the last term to (3/10)AB
y 0 and replace all differences by their values in

terms of the given y’s. The result reduces down to

/
•*.+•* 3h

ydx = + 5yi + y* + 6y« + y* + + y»].
Z$ 1

”

For the next set of six intervals from x6 to xn we get in the same way

J
'*» 3h

ydx = — [35 + 5^7 + y * + 639 + y \ 0 + 5yn + >12].
Za 10

Adding all such expressions as these from xq to x», where n is now a

multiple of six , we get

3;,

ydx = — [yo + 5* + 32 + 633 + 34 + 535 + 23# + Sy? + 3s
x $ 10

+ 639 + 310 + 5yn + 2312 + * * *

+ 23n-« + 5yn-6 + vn-4 + 6yn-* + 3n-2 + 5yn-i + 3n].

This formula is known as Weddle's Rule. It is the most accurate of

the four formulas thus far developed. In usefulness it is second only

to Simpson’s one-third rule.

The geometric meaning of Weddle’s rule is that we replace the

graph of the given function by n/6 arcs of fifth-degree parabolas.

We shall now apply these four formulas to two examples, chosen at

random.

Example 1. Compute the value of the definite integral

nb 2

I log 0 xdx.

Solution . We divide the interval of integration into six equal parts

each of width 0.2. Hence A = 0.2. The values of the function 3 = log* x

are next computed for each point of subdivision. These values are given

in the table below.

X log, X X log. X

1.0 1.38629436 4.8 1.56861592

1.2 1.43508453 5.0 1.60943791

1.4 1.48160454 5.2 1.64865863

1.6 1.52605630
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(a) By the trapezoidal rule we have

It = 0.2 [9. 13827570] - 1.82765514.

(b) By Simpson’s one-third rule we have

0.2~ [3.03495299 + 4(4.57057874) + 2(3.05022046)] = 1.82784726.

(c) Using Simpson’s three-eighths rule, we get

Ing = 3/8(0.2) [3.03495299+ 3(6.09474290+2(1 .52605630) 1 = 1.82784707.

(d) By Weddle's rule we get

Iw = (0.3) (0.2) [3.03495299 + 5(3.04452244)

+ 3.05022046 + 6(1.52505630)] = 1.82784741.

The true value of the integral is

/•S.t -]*.2

/= I log, xdx = x (log. * - 1) = 1 . 82784744.
Ji J 4.0

Hence the errors are

Br = 1.82784744 - 1.82765514 = 0.00019230 = 19230 X 10-*,

£l/s = 0.00000018 = 18 X 10~ 8
,

Em = 37 X 10-",

Ew = 3 X 10-*.

Example 2. Compute the value of the definite integral

J

.1.4

(sin x — log, x + ex)dx.
0.2

Solution. We shall divide the interval of integration into twelve equal

parts by taking A = 0.1. The values of the function y = sin z— log, x+e*
are then computed for each point of subdivision. These values are given

in the table below.

X y X

0.2 3.02951 0.9 3.34830

0.3 2.84936 1.0 3.55975

0.4 2.79754 1.1 3.80007

0.5 2.82130 1.2 4.06984

0.6 2.89759 1.3 4.37050

0.7 3.01465 1.4 4.70418

0.8 3.16605
i
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i

(a) By the trapezoidal rule:

It = 0.1 [40.56179] 4,056 8.

(b) By Simpson’s one-third rule:

0.1
I l/J

= —[3.02951 + 4.70418 + 4(20.20418) + 2(16.49077)] = 4.05106.

'(c) By Simpson’s three-eighths rule:

0.3
Im - —[3.02951 + 4.70418 + 3(26.90753) + 2(9.78742)] = 4.05117.

O

(d) By Weddle’s rule:

Iw = 0. 03[21. 05841+ 5(13. 58281)+6(6. 62137)+ 2(3. 16605)] = 4.05098.

The true value of the integral is

I = f (sin x - log, x + e*)dx = — cos x — x(og« x — 1) + e
1!

•'0.2 ' Jo 2

= 4.05095.

Hence the errors are :

Et = 4.05095 - 4.05618 = - 0.00523,

£i/a = - 0.00011,

EVi = - 0 . 00022
,

Ew = - 0.00003.

Remarks. The results of these two examples show that

1. The trapezoidal rule is much less accurate than any of the others.

2. Simpson's one-third rule is more accurate than the three-eighths

rule, the error of the former being only half that of the latter.

3. Weddle’s rule is more accurate than any of the others.

The trapezoidal rule has the advantage of great simplicity and is

sufficiently accurate in problems where the data are given to only two
or three significant figures.

. Simpson’s one-third rule is almost as simple as the trapezoidal, and
is far more accurate.

The three-eighths rule is less simple and less accurate than the one-
third rule and hence has no raison d’itre. It will be shown later (Art. 47)
that the error inherent in the three-eighths rule is generally 2{ times
that of the one-third rule.
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Weddle’s rule is simple in form and very accurate, but has the' dis-

advantage of requiring that the number of subdivisions be a multiple

of six. This means that when computing the values of y in many
problems the assigned values of x can not be taken as simple tenths,

as was done in the two examples worked above. The subdivision by
tenths is nearly always possible when using Simpson’s one-third rule.

However, when Simpson’s rule can not give the desired degree of

accuracy, Weddle’s rule should be used.

Simpson's three-eighths rule should never be used.*

41. Central-Difference Quadrature Formulas. By integrating

Stirling’s and Bessel’s interpolation formulas we can derive rapidly

converging quadrature formulas in terms of differences. Thus, integrat-

ing Stirling’s formula from x=x0—h to x=xt+h, or u = — 1 to u — 1, we
have

J 4>(x)dx = hJ (y0 +
1 + Ay„ u\

2
— + 7Ay-1

«(«* — 1) A*y_s + A*y_! «*(«* - 1)

H — 1 1 &y~*
31 2 41

«(«J — l)(w* — 4) A*y_» + A5y_2

5! 2

«*(«*- 1)(«* - 4)
H — A»y_, +

o! )
du

i
[
2y' + + Uj~ t)

4‘
5’- + tKt

“ 1

+

4) 4V‘]

]•
r i i i

|_y°
+ —b*y-i -— + 777; A«y-* +

1512

This formula gives the approximate value of the integral from

*=**o—

h

to x=xo+h. By advancing the subscripts of the y’s by one

unit we get the value of the integral from x=jco to * = *o+2h. Denoting
this integral by /#*, we have

/. - 2h\j t +

* Henceforth in this book the term ^Simpson’s rule” will mean Simpson’s one-third

rule.
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The integrals It*, /«*, • •
• H-t are likewise seen to be

" 2‘[» + 74’* " Tm

'

yi +

h, = 2k[y. + ~A’y,-
1
U-y. + -±

2
A'y],

r- ~ 2 + T4’
5’-' "

Ti)
4‘

2-+^i4,,-]‘

Adding all these separate integrals, we get

(41 : 1) /o" = 2h [jyi + yt + y& H + Vn-i

+ (A 2
^0 "4" + •

• + A 2yn— 2)

6

— y^(A 4
^-i + + A 4

^ 3 + 1 + A 4
yn-a)

4- y^(A*y_2 + +

where

J

» x0+*»fc

ydx
*0

and n is even.

Integrating Bessel’s formula (VI) over the interval x = Xo to *“*0+A,

or v = — §. to v = we have

/•*.+* r ll 2 /y0 + yi . .

(v
2 — i) A*y_i + A*y 0

/o
1 =

f
<f>(x)dx -hi l 1- vAy 0 4

2J x,
'- 1/2 \ 2 1 i

v(v2 - i) (t>
! - 5) AV-2 + A‘y_i

H — A*y_i H
3!

V(V2 _ J) (r
. - •)

H — A*y_2

4 !

5!

+
(»* - i)(«* - i)(v

2 - “) A«y.» + A«y_2

6 ! 2

t

yo 4- yi 1

2 12

1 A*y_i + A*yo
,

11 A4y_i + A4
y_i

2
+

720 2

191 A*y_j+ Aey_s

60480 ]•



126 NUMERICAL INTEGRATION Chap. VII

By advancing the subscripts a unit at a time we find the integrals

over the succeeding intervals to be

r
yi + y2 1 A2

y0 + A2
yi 21 + A4y°

v - *[- 12 2

_L_ A 6 AF ,*1

191 A*y_2 + A,
y_i~l

60480 2 J’

+ y« l As
yi + A 2

y, 21 A>± A4y »

191 A*y_i + A6
y0l

"
60480 2 1

y»-i+y>i 1 A2
y„-2 + A 2y„-i 11 A4y„_» + A4

y„_2

2
~~

12 2
+

720 2

191 A«y„_4 + A#
y„->1

A*y»_i

60480 2 J

Adding all these separate integrals, we get

(41: 2) Jo" = + yi + y* + • '
• + + j)

_ 1(1 y— -f A2
yo + A 2

yi + • • •

12 \ 2

A2y»_i\
+ A2yn-2 H

J

21(12^. 4- A4y_i + A 4
y0 + •

~
720V 2

A4
y„-2 \

+ A4y„_j H
J

_ + A*y_2 + A'y-i + • • •

60480 V 2

A‘y„-»Y1
+ 4-,_. + —J-)].

where n is now either even or odd.
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It will be observed that formulas (41: 1) and (41: 2) involve only

differences of even orders, that (41 : 2) involves all the even differences,

whereas (41: 1) involves only half of them. Formula (41: 2) is too

cumbersome for practical use as it stands, but it can be transformed

into a much simpler and more useful form, as we shall now show.

From the definition of differences we have

A 2
y_i = Ay 0 ~ Ay_i,

o
N

<J II
t> 1 Ayo,

A2
y»-i = Ay„ - Ayn_i,

A 4 V_2 = A 3
y_i - A 3

y_2,

A 4
V-i = A 3

y0 - A 3
y_ i,

A 4
>’„-2 = A3

y„_i “ A3
>'n-2,

A 6y_ 3 = A‘y_2 - A‘y-3,

A 6
y_2 = A 5

y_i - A 5y_2 ,

A 6
y„_3 = A 6

yn- 2 - A 6
yn_3, etc.

Substituting in (41 : 2) these values of the even differences, we find that

all differences except those at the beginning and end of the table cancel

one another and that formula (41 : 2) reduces down to

-
*[(y + * + »+•• + +t) +

11 /A 3v-2 + A 3y_A 191 /A 6y_s + Asy_2
'

720 \ 2 /
+

60480 V 2 ,

1 /Ay.-, + A v„\ 11 /A 3
y„‘_2 + A 3

y„_i\

12 \ 2 /
+

720\ 2 /

191

60480

+ A*y.

~2

which can be written in the simpler form
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(41:3) /,« = h[(~ + y, + y2 + • •
• + yn-i + y)

I /Ayn-i + Ay„ _ Ay.t -f Ay0\
~

12 V 2 2 /

II /As
y,_s + A*y„_i A5y_2 + A*y_i\

+
720\ 2 2 /

191 /A*y»_j + As
y„_j A5y_a + A‘y_2\

~
60480 V 2 2 /

The results given by this formula are identical with those given by
(41: 2), but the labor involved in obtaining them is only a small

fraction of that required when using (41 : 2).

The geometric significance of formulas (41: 1), (41: 2), and (41: 3)

should be noted. Formula (41 : 1) replaces the graph of the given func-

tion by n/2 arcs of parabolas of the sixth degree, whereas (41: 2) and
(41 : 3) replace the graph by n arcs of sixth-degree parabolas.

By neglecting fourth and sixth differences in (41: 1) and replacing

the second differences by their values in terms of the y’s, we shall find

that (41: 1) then reduces to Simpson’s one-third rule. This formula
therefore represents Simpson’s rule with correction terms.

Formulas (41: 2) and (41: 3) likewise represent the Trapezoidal rule

with correction terms.

We shall now apply (41 : 1) and (41 : 3) to two examples.

Example 1 . Compute the value of tt from the formula

7r dx

4
“ J 0 1 + jc

1
’

Solution. We first compute the values of the function y- 1/(1 +**)
from *=—0.3 to * = 1.3, taking A = 0.1, and then form a table of

differences as shown on the following page.

Substituting in (41 : 1) the appropriate differences, we have

T =
0.2J3. 9311573 + 4-(~ 249992) -—(- 7) + -—(778)

4 L 6
'

180 1512

= 0.78539816.

.’. * = 4 X 0.78539816 = 3.14159264.

The true value of * to nine figures is

ir = 3.14159265.
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Difference Table for y — 1/(1 +**.)

1

X y Ay A*y AA
y Al

y A%
y

-0.3 0.9174312

441073
1 o 0.9615385 -155468

285605 -31127
-0? 0.9900990 -186595 + 19702

99010 -11425 +3148

0 !. 0000000 -198020 +22850 -6296
- 99010 + 11425 -3148

0.? 0.9900990 -186595 19702 -4762

-285605 +31127 -7910

0.2 0.9615385 -155468 11792 -1320

-441073 42919 -9230

0.3 0.9174312 -112549 2562 + 1886

-553622 45481 -7344

0 A 0.8620690 - 67068 - 4782 +3323

-620690 40699 -4021

0.5 0.8000000 - 26369 - 8803 3085

i -647059 31896 - 936

0.6 0.7352941 4- 5527 - 9739 1983

-641532 22157 + 1047

0 7 0.6711409 4* 27684 - 8692 868

-613848 13465 + 1915

0.8 0.6097561 41149 - 6777 86

-572699 6688 2001

0.9 C. 5524862 47837 - 4776 - 299

-524862 1912 1702

1.0 0.5000000 49749 - 3074 - 416

-475113 - 1162 1286

1.1 C. 4524887 48587 - 1788

-426526 - 2950

1.2 C. 4098361 45637

-380889
! 3 0 3717472

Substituting in (41 : 3) the appropriate differences from the table, we
get

— = 0. 1 [7.8498150
- —(- 499988) + -^-(375)

4 L 12 720

191 1
(1494) = 0.78539817.

60480 J

ir =i 4 X 0.78539817 = 3.14159268.

r his value is slightly less accurate than that obtained by (41: 1), but

either result is correct to as many figures as were used in the computed
ordinates.



130
numerical integration [Chaf. VII

Simpson’s rule gives for this problem the value

ir = 3.14159260,

which is likewise correct to as many figures as are given in the computed

ordinates. , . .

Example 2. Compute the approximate value of the integral

dx-•
i x

Solution. Taking A = 0.1, we compute the values of y-1/* at one*

tenth unit intervals from * = 0.7 to * = 2.3 and form a table of differences.

Difference Table for y-l/x-

X y A? A*y Aa
y A4

y A*y A*y

0.7 1.42857143
-17857143

0.8 1.25000000 3968254

-13888889 -1190476

0.9 1.11111111
-11111111

2777778
- 757576

432900
-180375

1.0 1.00000000
- 9090909

2020202
- 505051

252525
- 97123

83252

1.1 0.90909091
i

- 7575758

1515151
- 349649

155402
- 55505

41618

1.2 1 0.83333333
|

- 6410256

1165502
- 249752

99897
- 33293

22212

1.3 0.76923077
- 5494506

915750
]

- 183148

66604
- 20821

12472

1.4 0.71428571
- 4761904

732602
- 137365

45783
- 13459

7362

1.5 0.66666667 595237 32324 4478

- 4166667 - 105041 — 8981

1.6 0.62500000
- 3676471

490196
- 81698

'

23343
- 6147

2834

1.7 0.58823529
- 3267973

408498
- 64502

17196
- 4292

1855

1.8 0.55555556
- 2923977

343996
- 51598

12904
- 3077

1215

1.9 0.52631579
- 2631579

292398
- 41771

9827
- 2234

843

CQO

2.0 0.50000000
- 2380952

250627
- 34178

7593
- 1645

2.1 0.47619048 216449 5948

- 2164503 - 28230

2.2 0.45454545 188219

- 1976284

2.3 0.43478261
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Substituting in (41 : 1) the appropriate differences, we get

/ = 0.2 ^3.45953943 + -^-(3727034) - ^(281353)

+—(61266)1= 0 . 693147185 .

1512 J

The correct value is log,2 = 0.693147181.

Substituting in (41:3) the appropriate differences from the table, we
get

r 1 11
I = 0.1 1^6.93771403 - —(7594744) + —(593339)

191 1
(136810) = 0.69314714.

60480 J

It will be seen that formula (41 : 1) gave the more accurate value in

this example as was the case in the preceding.

Concerning the relative merits of formulas (41: 1) and (41: 3), it

may be said that (41:1) converges more rapidly and is therefore slightly

more accurate. It utilizes fewer ordinates outside the range of integra-

tion than does (41: 3). Formula (41: 1) requires that the number of

subintervals be even, and also requires a little more labor in its applica-

tion than does (41: 3).

Formula (41 : 3) has the advantage of being applicable to any number
of sub-intervals and of requiring very little labor in its application.

It also gives the same degree of accuracy with third or fifth differences

as (41 : 1) gives with fourth or sixth differences. Its chief disadvantage

is that it utilizes several ordinates outside the range of integration.

The extra-interval ordinates required in formulas (41 : 1) and (41: 3)

can usually be found by computation, as in the examples worked above,

or by extrapolation by means of Newton’s formulas (I) and (II).

Usually,however, it is not safe to use extrapolation for finding more than

one ordinate at each end of the range.

41. Gauss's Quadrature Formula. The most accurate of the quadra-

ture formulas in ordinary use is known as Gauss’s formula. In Simpson’s

and Weddle’s formulas the ordinates are equally spaced, but it occurred

to Gauss that some other spacing might give a better result. Hence he

set for himself this problem:

If the definite integral fj{x)dx is to be computed from a given num-
ber of values of /(*), just where should these values be taken in order

to get a result of the greatest possible accuracy? In other words, how
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shall the interval (a, b ) be subdivided so as to give the best possible

result?

It turns out that the points of subdivision should not be equidistant,

but they are symmetrically placed with respect to the mid-point of the

interval of integration.

Let I=f
h

a
ydx denote the integral to be computed, where y=f{x).

On changing the variable by the substitution

(42:1) x = a + (6 - a)u

the limits of integration become 0 and 1. The new value of y is

y = /U) = fW + (b - a)u] = 4>(u),

say. Then since dx = (b—a)du ,
the integral becomes

(42: 2) I = (b — a) f <t>(u)dn.

Jo
Gauss's formula is

(42: 3) f <t>(ti)du = Ri<t>{u\) + R^friuz) +ll?30(tfj) + *
* +

Jo

where uu « 2 ,

• u n are the points of subdivision of the interval

u = 0 to u — \. The corresponding values of x are therefore

Jki = a + (b — a)uh x2 = a + (6 — a)ui, etc.

The value of the integral J^fix) is therefore

(42: 4) / = J f(x)dx = (b — a)[Ri(t>{ui ) + R^M + • • + Rn<t>(u«)].

We shall not give a detailed derivation of Gauss's formula (42: 3),

but merely show how the values of U\
%
u2t

•
•

• un and J?i, R2 ,
•

•
• Rn

are found and then show how to apply it to an example.

We assume that <f)(u) can be expanded in a convergent power series

in the interval u = 0 to u = 1. Hence we write

(42: 5) = a0 + aiu + a2u 2 + a^u* + •
• + amum + • • • .

We also assume that the integral can be expressed as a linear function

of the ordinates of the form (42: 3). Integrating (42: 5) between the

limits 0 and 1, we have

(42: 6) I = f <f>(u)du = f (cio + 0iu + a2u2 + •
• + 0»«m +

Jo Jo
)du

d\ d2 08 04 CLb

= a0 + - + - +- + - +- +
2 3 4 5 6

Om •

m + 1



Art. 42] GAUSS’S FORMULA 133

From (42 : 5) we also have

= a0 + aiUi + a 2Ui
2 + + • + amui

n + •

,

<t>(u2) = a Q + ai« 2 + a2u2
2 + + • *

* + amM 3
m + •

,

0(w„) = a 0 + + a 2u n
2 + a 3u rf + • + + .

Substituting in (42; 3) these values of <t>(u\) f <t>(u«), </>(u n ), we get

/ = + fllWl + fl2Wl
2 +••'+ QmU\ m + )

+ Rzicio + <* 1^2 + a 2u 2
2 + • + amu 2

m
-f- )

f* -An(&0 + dl«n + H2«n* + ’
* + 0mU n

m
"f*

*
* h

or, rearranging,

(42: 7) 1 = a 0(R 1 + Ab + R 3 + * + Rj

1 4- A?2 u2 -f" “f R n u*\)

-f- a 2(R\uf -f- Ron*"’ H- • • •

“f- Rn it n
“]

+ a m(R\Ui
m -4- Rou-i" + • *

• + R tlu n "‘)>

Now if the integral / in (42. 7) is to be identically the same as the I

in (42; 6) for all values of (in, <u. etc.; that is, if (42: 1) is to be

identical with (42; 6) regardless of the form of the function <p(u )—

,

then corresponding coefficients of «o, ui, <h t etc. in (42: 7) and (42; 6)

must be equal. Hence we must have

Ri + *,+ *>+• + Rn = t,

R\Ui + Roll} + Rtfi 3 + ’
’ + RnUn = 2 ,

RiuS + R2ih
2 + R3UZ 2 + + A’*//,,

2 = l

1

Riur + R2u2
m + R*u 3

’" + • + Rutin™ =
m -f- 1

By taking 2n of these equations and solving them simultaneously, it

would be theoretically possible to find the 2n quantities u u ^ 2 .

• •
• u n

and R2t
• •

• Rn . However, the labor of solving these equations by
the ordinary methods of algebra would be quite prohibitive even for

small values of n. The difficulty is obviated by utilizing a result from
higher mathematics.
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It can be shown 41 quite easily that if <£(«) is a polynomial of degree

not higher than 2»-l, then «i, a„ can be found as follows:

Solve the equationf
<*»(<* - D"

dtn

The n roots of this nth degree equation are all real, and we may call

them /i, 1„. Then the a’s are given by the relations

1 + ll 1 + It 1 + tn

Ml = 1 »2 = >•••«»= — ’

2 2 2

On substituting these values of the a’s in (42 : 8), we can solve the first

n of these equations for the n R’s. We shall do this for the case « = 3.

The equation to be solved is

d*(l* - 1)» d*— = 0, or (
1* - 3t* + 31* - 1) = 0.

dt* dt»

Performing the differentiations, we get

241(51* - 3) = 0.

Hence 1= 0, ± V3/5, and therefore

Then
Ij = — V3/5 > tt — 0, Is = V3/5.

1 - V3/S 1 1 + V375
at = 1 ut = — i Wj

2 2 2

Substituting these values of Hi, a*, at in the second and third of equa-

tions (42: 8), we have the following three equations for determining

Rit R* '•

Ri + Rt + Ri= 1,

1 - V375’i\ Rt

)
+ i +K-

1 - Vl75\* Ri\* Rt

) + 7 + a

1

2

0 See, for example, Todhunter’s Functions of Laplace ,
Laml, and Bessel, p. 99.

f The roots of this equation are given to sixteen decimal places for i»«*l to n-7 in

Heine’s Handbuch der KugelfuncHonen ,
Vol. II, pp. 15-16. They are also given in-

directly for «« 1 to »« 10 in B. P. Moors’s Valeur Approximative d'une Intigrale Definie.

The r’s given by Moors are the half roots, that is, r - ± t/2.
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Solving these equations by determinants, we find

The numerical values of the m’s and R’s for » = 3, 4, 5, 6, 7 are given

below.*

n 3
'

m, = 0.1127016654,

«2 = 0.5,

m, - 0.8872983346.

” = 4
*

Ml = 0.0694318442,

Ms = 0.3300094782,

m, = 0.6699905218,

m 4
= 0.9305681558.

tt_5
’

m, - 0.04691007703,

Ms = 0.2307653449,

5
Ri — Ra —

18

4

/?, = R< = 0.1739274226,

7?s = = 0.3260725774.

= Rb = 0.1184634425,

/?s - Ri - 0.2393143352,

Ms = 0.5,

64
m 4 = 0.7692346551, 7? 3 = = 0.2844444444.

m» = 0.9530899230.

Mi = 0.03376524290,

Ms = 0.1693953068,

m, = 0.3806904070,

m4 0.6193095930,

ms = 0.8306046932,

m« = 0.9662347571.

A’, = Rt = 0.0856622462,

A, = As = 0.1803807865,

/?, = /?< = 0.2339569673.

* For additional values of n the reader should consult B. P. Moors, Valcur Aj>

-

oximative d'unc InUgrale Definie ,
where ( FaHe C) the values of the u s and R s are

Rwn to sixteen decimals for » ® 1 to n * 10. Our u's and the r's in Moors are connected

the re !ation u**%±r.
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»» = 7
*1 - 0.02544604383,

u2 - 0.1292344072,

ut = 0.2970774243,

«4 = 0.5,

= 0.7029225757,

«« = 0.8707655928,

«7 = 0.9745539562.

= 0.06474248308,

- Rt - 0.1398526957,

= 0. 1909150253,

256
= = 0.2089795918.

1225

Note. Some authors make the substitution

a + b b — a

which changes the limits of integration to —1 and 1. Then y becomes

[

a + b b — a ~l——t- —j~ 1

J
= w).

say, and the integral becomes

b - a r l

I = —-— 1 HOdt.
2 J-

1

Gauss’s formula in this case is

J'
yp(t)dt = A I’Piti) + A + • + A NUn)

,

where Ai = 2Ru At= 2R2 ,
- • A n = 2Rn ,

and lu /»,••• t„ are the roots

of the equation dn
(t*— l) n/dt n = Q. The formula for I is then

I = + A^{h) + •
• + A n+(tn)].

2

The relation between these t’s and our w’s is

1 + t

u =
2

We shall now apply Gauss’s formula to a simple example.

Example. Compute the integral
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Solution. Here we put x — a+ (b — a)« = 5+ 7w. Hence

1

4>{u) =
5 + 7«

Taking w = 5, we have

)
=

4>(u 2) =

1

5.32837054

1

6.61535741

1

= 0.187674636,

= 0.151163412,

<t>(u3)
= = 0.117647059,

8.5

<K« 4)
=

=

1

10.3846426
= 0.0962960439,

1

11.67162946
= 0.0856778399.

Substituting these values in (42: 4), together with the corresponding

R ’s for n = 5, we get

I = 710.1184634425 X 0.187674636

+ 0.2393143352 X 0.151163412

64
H X 0.117647059 + 0.2393143352 X 0.0962960439

225

+ 0.1184634425 X 0.0856778399],

or

I„ = 0.875468458.

The true value of the integral is

J

* 12
rf v 12— = log, — = log. 2.4 - 0.875468737.

t x 5

I he error is therefore

Eq = 0.00000028.

The value of this integral by Simpson’s rule, using fifteen ordinates,

was found to be

7i/j = 0.87547189.
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The error in this case is therefore

£,/, = 0.0000034,

or more than ten times as great as with Gauss’s formula. The labor re-

quired to find the integral by Gauss’s formula is, however, about ten

times as great as with Simpson’s unless a computing machine is used.

^Gauss’s formula is useful for another purpose besides computing

definite integrals. Recalling that the mean value of a function is given

by the formula

we see that the accuracy of the mean depends upon the accuracy with

which the integral fjydx can be computed. The most accurate value

of this is obtained by measuring ordinates at the points given by Gauss’s

formula.

Thus, if we wished to find the best value for the mean daily tempera-

ture from only four measurements, we would proceed as follows:

Denoting temperature by T, the hour of the day by t, and starting

from midnight as the beginning of the day, we have

f/m
T-m, t.-

•
•

24

Put t— a+(b—o)« = 24m. Hence

Zi - 24«! - 24 X 0.0694 = l.
h67,

h = 24m, = 24 X 0.330 = 7.
h92,

t, = 24m, - 24 X 0.670 = 16.h08,

1* = 24m, = 24 X 0.9306 = 22>33.

The best times during the day to take measurements are therefore

1:40 A.M., 7:55 A.M., 4:05 p.m., and 10:20 p.m.

In a similar manner we could find the best times of the day for making

five, six, or any other number of measurements by taking the proper, m's

for »=5, 6, etc.

The same method can be applied for finding the best positions or

times for taking measurements on any other physical quantity.

/Remarks. 1. The reader should bear in mind that Gauss’s formula
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gives an exact result when/(*) is a polynomial of the (2n— l)th degree

or lower.

2. Although Gauss's method is theoretically beautiful and of great

accuracy, it has the disadvantage of being laborious in its application,

for two reasons:

(a) If the values of y are to be computed from a formula, the

numerical values of u to be substituted in the formula must be given'

to at least as many significant figures as we wish to obtain in the y’ s.

(b) After we have found the y
9

s to the desired number of significant

figures we must multiply*them by R ’s having at least as many figures.

Gauss's formula thus compels us to deal with large numbers in every

step if w'e desire the accuracy it is capable of giving. In applying this

formula it is therefore almost imperative that we use a calculating

machine. Whoever doubts this statement has only to work out a simple

example to be convinced.

3/Gauss's formula should be used for computing definite integrals

only when few ordinates are obtainable or when the importance of the

result is such as to justify a great expenditure of labor.

43. Euler’s Formula of Summation and Quadrature. The ap-

proximate relation between integrals and sums is expressed by Euler's

summation formula. Written as a quadrature formula it is*

/„
-
"K

: + J{X l) +/(*»)+••*+ fixn-l) +
)

(43: l)

- - /(«)] + — [/"'(» - /'"(*)]
1 1 i Z\)

1,6

[m -/*(«)]+ [/
v * _

/
v *

*(<*)]

30240 1209600
]

+ R.

It will be observed that the first group of terms in parentheses on the

right-hand side is simply the trapezoidal formula. The others may be
looked upon as correction terms. By adding and subtracting h[fixo)/2

+/(*»)/2] or. the right-hand side of (43: 1) we have

c
b h

I f(x)dx = h[f(x0) +/(*i) + f /(*»)] - — (A*o) -I- /(*«)]
•'a 2;

"irw -/'(*)] + ••• • •

* For the derivation of Euler’s formula see Valine-Poussin’s Cours iVAnalyse In-

finitesimale
, II, p. 341; Whittaker and Robinson’s Calculus of Observations, p. 134; or

Charlier’s Mechanik des Himmels
,
II, $1.



140 NUMERICAL INTEGRATION [Chap. VII

Transposing and dividing through by h, we get

/(*o) + /(* 1) + • + f(xn) = — f f(x)dx + — [/(*o) + /(*»)]
h J a 2

+ -im - /'(«)] - - /'"Mi + •

,

or, since *o — a,xn = b,

i—n

E /(*<)
4-0

(43:2)

- 4 f + 4 tA®> + /(*) 1 + ~
1

» v a 2 12

-^r-w-rwi+^i/w -rw]

A7

1209600

Formula (43: 2) is Euler's summation formula. It is useful for finding

the approximate sum of any number of consecutive values of a function

when these values are given for equidistant values of x, provided the

integral Ja f{x)dx can be easily evaluated. In these formulas h is the

distance between the equidistant values of x
,
so that nh = b — a.

Note . Formulas (43: 1) and (43: 2) differ in an important respect

from the quadrature formulas previously derived. In (43: 1) the terms

on the right-hand side, beginning with (h/l2)[f'(b)—f'(a)], form an

asymptotic series. The same is true of (43: 2), beginning with the term

(1/12){r(b)-f(a)].
An asymptotic series is an infinite series which converges for a certain

number of terms and then begins to diverge. In computing with such

a series it is important to know what term to stop with in order to get

the most accurate result. We should stop not with the smallest term but

with the term just before the smallest
;
for the error committed is usually

less than twice the first neglected term* and is therefore least when

the first term neglected is the smallest term in the series. For the reason

just given it is important that Euler's formula be used with caution,

especially when finding sums by (43: 2). We shall now apply each of

these formulas to an example.

Example 1. Compute the value of it from the formula

7T r 1 dx

4
~

Jo 1 + a2
*

* See Charlier, loc. cit., p. 14.



Art. 43) EULER’S FORMULA 141

Solution . We take h = \ and compute the values of y = 1/(1 +*2
) at

each point of subdivision, as shown in the table below.

X y X y

0 1 ! 0.69230769

£ 0.97297297
1 0.59016393

1
3

0.9 i 0.5

£ 0.8

We next compute the derivatives of 1/(1 +x 2
), as given below.

W = TT~ J

/'(*) = “
(i + **) 2

24a(1 - a*)

f"'(x) = -
(1+ *2

)
4

/
v
(*) = -77—— U°*a - 3a- - 3],

(1 + A2
)
6

5760a
/
vii

( a)
= [7a8 - 49a 4 + 49a* - 7 .

(1 + a*) 8

Hence
/'(0) = 0, /'(l) = - £•

/"'(0) = 0, /"'(l) = 0,

/
v
(0) = o, r(l) = 15,

/
vii

(0) = 0, /
vii (l) - 0.

Substituting all these values in (43: 1), we get

7T 1— = —[0.75 + 0.97297297 + 0.9 + 0.8 + 0.692307694-0.59016393]
4 6

- (- i (15) = 0.78539816,
36 X 12 \ 2 / 6* X 30240

which is correct to its last figure.

Example 2. Find the sum of

1 _L _L +—•
51*

+
53*

+
55*

+ +
99*
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Solution. Here fix) = 1/x1 and h = 2. Then

fix) = - 4 ’ /"'(*) - - /
v
(*)

-1*5 r B

40320

*•

Remembering that a = 51, i = 99, and substituting in (43: 2), we get

*=•» 1 _ 1 r" dx 1 [~ 1 1 ~

|

1 r 1

~X'

+
TLsI*’

+
99*J

+
3 LSI*

4 r l l "i 16 r l l
1”

15 L51^
~

99®J
+

21 L51^
~

997J

—

1

15 L51» 99®J

= 0.004753416 + 0.0002432490

+ 0.0000021694 - 0.0000000008

= 0.004998833.

If we had attempted to find the sum of the squares of the reciprocals

of all the odd numbers from 1 to 99 we could not have obtained it

accurately, for each bracketed quantity after the second would have

been practically unity and therefore the various terms would have been

the same as the coefficients 4/15, 16/21, 64/15, etc. To get the greatest

accuracy in this case we should have to stop with the third term and

even then the error might be nearly 8/15. Hence the necessity for

caution in finding sums by means of Euler’s formula.

44. Caution in the Use of Quadrature Formulas. The student should

ever bear in mind that when computing the value of a definite integral

by means of a quadrature formula he is really replacing the given inte-

grand by a polynomial and integrating this polynomial over the given

interval of integration. The accuracy of the result will depend upon

how well the polynomial represents the integrand over this interval;

or, geometrically, on how well the graph of the polynomial coincides

with the graph of the integrand. Before beginning the computation

of an integral by a quadrature formula the computer should ascertain

the nature and behavior of the integrand over the interval of integration.

In some instances it may be necessary to construct an accurate graph

of the integrand. The computation can then be planned with reference

to the nature and behavior of the function to be integrated. The follow-

ing example will illustrate this point.

Example 1. Find by Simpson’s rule the value of the integral
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/
’ x7s/l — xl dx

., (2 - a-) 13 ' 2

Solution. The integrand is evidently negative from * = — 1 to * = 0,

and positive from x = 0 to * = 1 . Hence we divide each of these intervals

into four equal parts and compute the value of the integrand at each

point of subdivision. The results are given in the table below.

• X y X y

-1 -0 0.25 0.000001555
- 0.75 - 0.0001231 0.000485

- 0.50 - 0.00001753 i«X£M 0.02070
- 0.25 - 0.000000304 1 0

0 0

On applying Simpson’s rule to these tabular values we find

7°_, = - 0.0000441,

/o' = 0.006981.

/ = - 0.0000441 + 0.006981 = 0.006937.

This result could be accepted with confidence if the tabular values

were of the same order of magnitude, but the table shows that the

integrand at * = 0.50 is enormously larger than it is for smaller values

of *, and that at * = 0.75 it is enormously larger than at * = 0.50.

Hence we had better examine this function more closely in the region

from * = 0.50 to * = 1 and possibly make a new computation of the

integral.

• x y X y

0.50 0.000485 0.80 0.038445

0.55 0.001136 0.82 0.048654

0.60 0.002514 0.84 0.061016

0.65 0.005297 0.86 0.075765

0.70 0.010688 0.88 0.092918

0.75 0.020701 0.90 0.11221

0.80 « 0.038445 0.92 0.13259

0.94 0.15149

0.96 0.16306

0.98 0.15190

1 0
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The above table shows the variation of the integrand in the in-

terval 0.50^*^ 1, and Fig. 2 shows the graph for the whole inter-

val from x= — 1 to * = 1. A glance at the graph shows that in order

to obtain a trustworthy result we should divide the computation into

three distinct parts

:

(1) By taking h — 0.25 in the interval — 1<*<0.5,
(2) By taking h — 0.05 in the interval 0.5 <*<0.8,
(3) By taking h = 0.02 in the interval 0.8<*<1.
The results of these computations are

7_i = - 0.000035,

I™ = 0.002898,

lit = 0.023548.

.*. I = - 0.000035 + 0.002898 + 0.023548 - 0.0235.
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Even when the graph of the integrand is a smooth, regular curve

in the interval of integration a quadrature formula may not give a

very accurate result unless the subdivisions are very small. This fact

is illustrated by the following example.

Example 2 . Find by Simpson’s rule the value of

/ = J V(1 — x*)(2 — x)dx.

Solution. The values of the integrand are given in the table below.

X y , i y

-1 0 0.1 1.371496

-0.9 0.742294 0.2 1.314534

-0.8 1.003992 0.3 1-243756

-0.7 1.173456 0.4 1.159310
— 0 *6

1 .289961 0.5 1.060660

“0.5 I 360307 0.6 0 046573

-0.4 t .419859 0.7 0.814248

-0.3 I 446720 0.8 0.657267

~o.:> 1.453272 0.9 0.457165

-0.1 3.441874 1 0

0 1.414214 :

The correct value of the given integral to five significant figures is

found from a table of elliptic integrals to be

/ = 2 . 2033 .

Simpson’s rule gi\es the following values for different values of h :

(a) 7 — 2.0914 for h = 0. 5 . Percentage error = 5 . 1 ^-

(b) 7= 2.1751 for h - 0 . 2 . Percentage error = 1 . 28%.
(c) 7 = 2.1934 for // = 0 . 1 . Percentage error = 0 .42 %^.

It will be observed that when the interval of integration was divided

into 20 subintervals the error was nearly a half of one per cent, which is

less than slide-rule accuracy. Inasmuch as the tabular values are all

correct to six or seven figures, the errors in the results found above are

due entirely to the inherent inaccuracy of Simpson’s rule. The trouble

with this problem lies in the fact that the integrand cannot be approxi-

mated closely by a polynomial near the end points of the range of in-

tegration unless h is taken very small in these regions. Simpson’s rule

would give an accurate result in this case if the computation were made
in three parts, as in the previous example, and smaller values of h were
used for the ends of the interval of integration.
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In Art. 48 several formulas will be derived for the inherent error in

Simpson’s rule, but occasionally a problem may arise when the exact

error cannot be easily determined even with the aid of those formulas.

45. Mechanical Cubature. In this article we shall give two methods

for finding the numerical value of a definite double integral of a function

of two independent variables. The first method will be by application

of a formula which may be regarded as an extension of Simpson’s

rule to functions of two variables. The second method is simply by

repeated application of the ordinary quadrature formulas for one

variable.

To derive the double quadrature formula we start with the formula

for double interpolation, namely (IX) of Art. 36, and integrate this

formula over two intervals in the y-direction and two in the ^-direction,

first omitting from the formula all terms involving the differences

A*+#, A®**, A4+
®, A,+1

,
A1+

*, A0*4
, since these differences involve values

of the function outside the rectangle over which we are integrating.

Since dx=hdu, dy=kdv we have, after omitting the terms just

mentioned,

/
*•+** /•*•+** r 2 r 2

(

J
zdydx = hk

J J
|z00 + «A,+0z0o + pA04"^,

+— [«(« — l)Al+0Zoo + 2m»A i+1
Zqo + v(v — l)A0+Jzoo]

H [3m(« — l)»A*+1Zoo + 3uv(v — l)A1+2Zoo]
6

+— [6«(« - 1)p(p - l)A*+*Zoo] \dv du.

Performing the indicated integrations and replacing the double dif-

ferences by their values as given in Art. 35, we get

hk
(45 1 1) / ® ~ [zoo + Zos + Z22 + Zjo + 4(zoi + Z 12 + Zti + Zio) 16zn J.

This is the formula which corresponds to Simpson’s rule for a function

of one variable. It can be represented diagramatically as shown in

Fig. 3, the coefficients of the several z’s being shown on the diagram.

By adding any number of unit blocks of this type we could obtain a

general formula for double integration, corresponding to Simpson’s

rule for n intervals in single integration, but it is not worth while to

do this.
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Formula (45: 1) can be rewritten in either of the following forms:

hTk
,

k k
(45: 2) /=—

I

—(zoo+4zoi+«o2)+4 •—(aio+42n+2i*)+~(*o»+4«ij+s*s) ],

*5 3 3

hr k k k
(45: 3) /=—

I

—(zoo+4zi#+8jo)+4—(z0i+4zn+Z2i)+—(zoj+4zu+Zjj)].
3 L 3 3 3

Fig. 3

Now such an expression as (&/3)(zoo+4zio+Z2o)is nothing but Simpson’s

rule applied to a single row in the diagram, in this case the top horizontal

row. Let us put »

* h
A 0 = —(s00 + 4zio + z2o), A i

= —(zoi + 4zn + z*i), etc.

3 3

Then (45: 3) becomes

(45: 4) 7 = —G4o + 44 1 + ^4j)

.

3

This formula shows that formula (45 : 1) is equivalent to applying

Simpson’s rule to each horizontal row in the diagram and then applying
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it again to the results thus obtained. These considerations lead to the

following general statement:

If we are given a rectangular array of values of afunction of two variables
,

we may apply to each horizontal row or to each vertical column any quadra-

ture formula employing equidistant ordinates
,
such as Simpson’s and

Weddle’s formulas. Then to the results thus obtained for the rows (or

columns) we may again apply a similarformula .

This importaid ics*:lL makes it unnecessary to derive general formulas

for approximate double integration.

It is instructive to notice the geometric significance of this general

statement. Since the double integral between constant limits of a

function of two variables is represented by the volume of a solid having

a rectangular base and height at any point equal to z[—f(x , y)], it is

evident that the integrals A 0 ,
A i, etc. are merely vertical cross sectional

areas of this solid made by equidistant planes. Then when we apply a

quadrature formula to these ^4’s, we are merely finding the volume of

the solid, as if we evaluated the integral J^A s dx.

Arf engineering application of mechanical cubature would be the

solution of such a problem as the following :

Suppose it were necessary to determine the amount of earth to be

moved in making an excavation for a large building on uneven ground,

or in grading down or filling in a city block. The area to be excavated

would be divided up into small rectangles by running two systems of

equidistant parallel lines at right angles to each other. The distances

of the corners of these rectangles above or below an assumed datum
plane wrould be the z's of this article. Knowing these z’s and the dis-

tances between the parallel lines (the h’s and k’s) t we could find the

volume of the excavation by the methods given above.

We shall now work two examples by these methods.

Example L Find by formula (45: 1) the value of the integral

I =
dydx

xy

Solution . Taking h = 0.2 and & = 0.3, we compute the values of

z — l/xy shown in the table below.

\ X
4.0 4.2 4.4

2.0
j

0.125000 0.119048 0.113636

2.3
|

0.108696 0.103520 0.0988142

2.6 0.096154 0.0915751 0.0874126
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Substituting these in (45 : 1), we get

0.2 X 0.3
I = [0.12500 + 0.096154 + 0.0874126 + 0.113636

9

+ 4(0.108696 + 0.0915751 + 0.0988142

+ 0.119048) + 16 X 0.103520]

= 0.0250070.

The true value of the integral is

J

* 4 4 /» 2 .6

A J •>

dydy

xy
- log. 1.1 X log, 1.3

= 0.0953108 X 0.262364

= G. 0250061

.

The error is therefore

R = 0.0250061 - 0.0250070 - - 0.0000009.

Example 2. Find by numerical integration the value ot the integral

162 z* 3 • dvJx

J
"

J'

‘
'

' X

Solution. Here we take /i = 0.2, ^ -0.3 as before, and compute the

following table of values of s=\/xy.

V
y \

!

4.0 4 2 4 A 4 6 1 4 8 5.0 5.2

2.0 0 125000 0.116048 0.113636 0 10869o
j

0. Kill 67 0.100000 0 096154

2.3 0.108696 0.103520 0.0988142 0 0945180! 0.0905797 0.0860565 0 0836120

2.6 0 096154 0.0915751 0.0874126 0 0836126; 0 0801282 0.0769231 0.0739645

2.9 0.0862069 0.0821018 0.0783699 0 074962?! 0.0718391 0.0680655 0.0663130

3.2 0.078125 0.0744048 0.0710227 0.0679348 0 0651042! 0 0625000
i

0.0600962

Applying Weddle’s rule to each horizontal row, we have

A 0 = 0.06[0. 125000 + 5(0.119048) + 0.113636 + 6(0.108696)

f 0.104167 + 5(0.100000) + 0.096154]

= 0.131182,

,4i = 0.114072, .+ = 0.100909, A 3 = 0.090470,

A k = 0.081989.

Now applying Simpson’s rule to the A 's, we get

I «= 0.1 [0.131 182 + 4(0 . 1 1-1072) + 2< 0.100909)

-|. 4(0.090470) + 0.081989 * 0.123316.
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The true value of this integral is

J

»*.i /•*.* dydx

4 Jt xy

and the error is therefore

E = 0.123321 - 0.123316

log. 1.3 X log. 1.6 = 0.123321,

0.000005.

EXAMPLES ON CHAPTER VH

1.

In the table below are given corresponding values of a variable

x and an unknown function y. For what value of * is y a minimum?

X y

3 -205

4 -240

5 *-259

6 -262

7 -250

8 -224

2.

For what value of x is the following tabulated function a minimum?

X y

0.2 0.9182

0.3 0.8975

0.4 0.8873

0.5 0.8862

0.6 0.8935

0.7 0.9086

3.

In the year 1918 the declination of the sun at Greenwich mean
noon on certain dates was as given below. Find when the declination

was a maximum.

Date Declination

June 19 23* 25' 23*5

• 20 • 26 19 .4

• 21 « 26 50 .5

• 22 ‘ 26 56 .8
41 23 * 26 38 .3

• 24 • 25 55 .1

« 25 • 24 47 .1
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4. Compute the value of

J

'rl 2

VT^oT
0

162 sin2 0 d<f>

by Simpson’s one-third rule and by Weddle’s rule, taking

<t>
= 0°, 15°, 30°, 45°, 60°, 75°, 90°.

Compare your results with that found by the series method in

Example 21, Chapter I. Also compare the amount of labor involved

in each case.

5. Compute by Gauss’s method the value of the integral

r r/I
d<t>

* o V'l — 0.5 sir

taking » = 5, and compare your result with the known value

1.8540746773.

6. Compute by central-difference formulas (41: 1) and (41: 3) the

value of the integral

r 1000 dx

log io x

taking ten subintervals.

7. Find by Weddle’s rule the value of the integral

• r * '* xdx

-f
-

Jo. 4 SIJ o.4 sinh x

taking twelve subintervals.

8. Find by Euler’s quadrature formula the value of the integral

cos*2 dx.

9. Find by Euler’s summation formula the sum of

1 1,1
1 + • • •

-f H
400 402 498 500

10. Find the value of the integral

= I log; o si

J ao*

io sin* dx
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by (a) Euler’s formula; (b) Gauss’s formula, taking » = 5; (c) central-

difference formula (41: 3), taking ten subintervals.

11. Compute by any method the value of the integral

12. Compute to five decimal places the value of

l >* xdx

cos X



CHAPTER VIII

THE ACCURACY OF QUADRATURE FORMULAS

46. Introduction. A computer should have some means of estimating

the reliability of every computed result. It is not always possible to

have an explicit formula giving the error committed, but usually there

exists some means for ascertaining the magnitude of most unavoidable

errors.

The purpose of this chapter is to determine the relative accuracy of

several well-known quadrature formulas and then give explicit formulas

for the error inherent in the most useful of these. We hope to show,

incidentally, that Simpson's three-eighths rule is inferior to ijhe one-

third rule in every respect and is therefore not worth mentioning in

any future textbooks in which approximate integration is touched

upon.

47. The Relative Accuracy of Simpson’s Rules and Weddle’s Rule.

In order to compare the accuracy of these three quadrature formulas we
must apply each of them to the same interval and divide this interval

into the same number of subintervals. The smallest number of sub-

intervals to which all three formulas can be applied is six. We therefore

consider an interval of width 6 ft, and let x = k be the mid-point of this

interval. The points of subdivision, including the end points, will

then be x = k — 3h, k — 2h, ft — A, A ,
A+A , k+ 2A, k+ 3h.

Let y=/(x) denote the function to be integrated. We shall assume
that this function is continuous and has continuous derivatives of all

orders throughout the interval (ft — 3ft, ft+ 3A). We shall further assume
that the value of ft is such that /(x) can be represented in the given

interval by a convergent power series in h. Such a power series is given

by a Taylor expansion of the given function.

Now let F(x) denote the integral of/(x), so that

J’/(x)dx = F(x) + C.

pk+ik
Then the true value of the integral I J(x)dx is

Jk-3k

J

»*+*

*

/(x)dx = F(k + 3h) - F(k - 3h).

fc—SA i

153
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Expanding the functions F(k+3h) and F(k—3h) into a Taylor series

and remembering that F'(x) =/(x), F"(x) ”/'(*). etc., we have

9A* 27**
F(* + 3A) = F(k) + 3*/(*) + —/'(A) + —/"(A) + • • •

2 6

9A8 27A8

F(* - 3A) = F(k) - 3A/(A) + —/(A) - —/"(A) - • • •

2 6

Hence

J

.t+i* 81
f(x)dx - 6A/(A) + 9A*/"(A) + -A»/*(A)

*-** 20

+^w + --.

* ^
The value of this integral by Simpson's one-third rule is

/i/» = y {/(A - 3A) + /(A + 3A) + 4[/(A - 2 A) + /(A) + /(A + 2A)]

+ 2[/(A- A)+/(A + A)]}.

Replacing the functions /(A— 3A), /(A-+-3A), etc. by their Taylor

expansions, we get

(47: 2) /,„ * 6A/(A) + 9A*/"(A) -A‘/*(A) + ^A^‘(A) + • • •.

12 360

Subtracting (47 : 2) from (47 : 1), we have

(47: 3) J5y,

Simpson’s three-eighths rule gives for the integral (47 : 1)

3h,
Im » — {/(* “ 3*) + /(* + 3A) + 3[/( A - 2A) + /(A + 2A)

O

+ /(*- *)+/(A + A)] + 2/(A)}.

Replacing the several functions, on the right by their Taylor expansions,

we get

(47: 4) J,/8 - 6A/(A) + 9A*/"(A) + ^A«/*(A) + ^W'(A) + • • • .

o 80

Subtracting (47 : 4) from (47 : 1), we have
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(47: 5) £,/. - / - - - —/*(*) - —h7
f
rl(k) .

4CT 560

The value of the integral (47:1) by Weddle’s rule is

3h.
Iw = " ih) + + 3A) + 5W k ~ 2h) + /(* + 2*)1

+ /(*-*)+/(* + A) + 6/(*)]}.

Replacing the functions on the right by their Taylor expansions as

before, we get

(47: 6) Iw - 6hf(k) + 9**/"(*) + ^W(*) + ^rk7
J"(k) + • • • .

ZU o

Subtracting (47: 6) from (47: 1), we find

(47: 7) Ew = I - Iw = - —/"(A) ^
140

as the error in Weddle’s rule.*

In order to compare the errors inherent in the two Simpson rules,

let us write them in the forms

4 A* r 51 1
a,.- --[w + -wwj.

9 A* r 53 *1

It is evident that the quantities within the brackets are nearly equal,

and all the more so if h is small. Hence when h is sufficiently small the

errors inherent in the two rules are in the ratio of the coefficients of the

bracketed expressions, that is

£,/ * 4
F _

4
p

The inherent error of the one-third rule is thus less than half that of

the three-eighths rule.

Since the one-third rule is simpler in form, more flexible and con-

venient in its application, and more accurate than the three-eighths

rule, there is no reason why the latter should not be relegated to the

category of useless things.

* In terms of differences the error for six subintervals is
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As to the inherent error in Weddle’s rule, it is evident that when h

is such that the Taylor series converges rapidly and the principle part

of the error is therefore given by the first term of the series representing

the error, Weddle’s rule is far more accurate than either of the Simpson

rules. If, however, h is so large that the error series converges very

slowly or even not at all, Simpson’s one-third rule may give just as

accurate a result as Weddle’s. In the vast majority of cases Weddle’s

rule is more accurate than Simpson’s and should be used in problems

where considerable accuracy is desired.

Remark. The reader should bear in mind that the comparison of

the accuracy of the three quadrature formulas considered in this

article is based on the assumption that the value of h is such that the

given function can be represented over the interval of integration by a

convergent power series in h. If the interval h is taken so large that this

is not true, or if the series converges very slowly, there no longer exists

any basis for an analytical comparison and there is no certainty as to

what quadrature formula will give the best result.

48. Formulas for the Error in Simpson’s One-Third Rule. The
formula usually given for the error inherent in Simpson’s rule is*

(48: 1) E1/3 - - -£-(b - <*)/-($), a £ t £ 6,
loO

where (a, b) is the interval of integration. This formula evidently

applies only when the analytical form of the function f(x) is known.

Its usefulness is further limited by its indefinite magnitude, due to the

factor /
iv(0 ,

and by the amount of labor which would sometimes be

required in finding the fourth derivative of /(*).

48a). A &eries__Formula for the Error. A more definite and useful

formula for the error can be derived as follows

:

Let x=k be the mid-point of an interval of width 2h. Then the true

value of the in-tegral ff(x)dx over this interval is

(48: 2) / = I f(x)dx = F(k + h) - F(k - h).
J k-K

Expanding F(k-\-h) and F(k — h) by Taylor’s theorem and remembering

that F'{x) =/(*), F"(x) =/'(*), etc., we have

F(k + h) - F(k) + hf(k) + jf{k) + jf'(k) + •••

F(h - k) - F(k) - hf(k) + jf{k) - ~nk) + • • • .

• For an elegant derivation of this formula see Vallfe-Poussin’s Cours d*Analyse

InfinfacsimdU, I, pp. 930-331.
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Hence

r k+h r w a*

(48: 3) / = f(x)dx = 2 hf(k) + -/"(*) + -Mk) + • • •

J k-h L 3! 5!

The value of this integral by Simpson’s rule is

(48: 4) Im = -[/(*-*) + 4/(*) + f(k + h)].
J

Replacing f(k— h) and f(k+ h) by their Taylor expansions, we have

(48: 5) 7i/a = \f(k) + h'f"{k)+^/iv
(*) +Wvi(« + •

* ]•
3 4! o!

Subtracting (48: 5) from (48: 3), we find the error inherent in Simpson’s

rule to be

(48: 6) E = / — / 1/3

h* r

.

90 L

W h*

'(*) + —f'Kk) 4 -

/
viii

(*) +
21 1008

]•

This is the error for the two subintervals from x =k—h to x — k+h.

To get the error for the whole interval (a, b), where Xo= a and xn = b,

we put k — xi, x3 , Xi,‘- x„_i in (48: 6) and add the results. We thus

have

(48: 7) E = -
^ j/

iv
(A-i) + f

iv(x3) + • •
• + /

iv
(*„-i)

+ ^[/
vi(*0 +/vi

(*3) H + /
vi(*„- i)

]

+— [f“‘(*0 +/viii
(*s)+ • •

• +/viii(*»-i)] +•••}•
1008 J

This is the fundamental formula from which more useful formulas

will be derived.

48b). A« Formula in Terms of Differences. In many applications of

Simpson’s rule the analytical form of the function to be integrated is

either totally unknown or else is of such a nature that its fourth and

higher derivatives are difficult to calculate. In either case formula

(48: 7) can not be applied as it stands. We get around the difficulty by

transforming it into another form.

Let us replace the derivatives /
lv
(*i), /

lv
(*a).

•
* /

vlll
(*i)» etc* by

their values in terms of differences. For this purpose we write Stirling s

interpolation formula in the form
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Ayt + Ay*-* *
y = y(*) = f(k + hu) — yt + w

2 2

+
«(«* - l 2

) A*yt-> + A*yt-afc

3!

to eighth differences.

Differentiating this formula arid..respect to * by »'

mu\idy/dx^(dy/du)idu/dx) and the relations—h+«“.or« (* *V

and then putting m= 0 in each derivative, we get

/*(*) = y4 (*
4>*-“ - jA'y>-u + m^yk-ih

1

fKk) =
«*\

/"“(*) = 7g(
A>yt-

)

Ah

Now putting k=x\, xt, • • • *»-i, wntmg A
4
y«, ia

7wheJ^ values of

ing all eighth differences, and substituting in (48. )

the fourth and sixth derivatives, we get

(48: 8) £1/1 « - + A4yi + A4;Vs + " ' + A4y"_#)

4-—(A*y_* + A*yo + A‘y* +
756

+ A‘y»-«) •

This expression for the error in Simpson's rule is identical1 with the

last two terms of our centraUifferenee quadrature formula

”

That formula is therefore Simpson’s rule plus its correc 1

“tfTd “rS'l Terms «/ 1he Oxen Ordinates. To

for in terms of the given ordinates, we r«P'ace the differences
.3

(48: 8) by their values in terms of the y s as given in A . >

Since in many problems the y’s are obtained by measureme

computation, they are liable to be affected with small errors

af^ted

errors are cumulative in the process of taking differences, as P "1

out in Art. 13. Hence in such problems the sixth differences

largely of accumulated errors. For this reason we will
J ^

differences in formula (48: 8) and replace only the fourth diffe

by their values in terms of the y’s.

Since
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A4
y-1 * y»

- 4y» + 6yi - 4y0 + y-i,

A4
yi = yt

- 4y4 + 6y» - 4y* + yi,

A4
y»-» = y„+i - 4y„ + 6yn~i - 4yB_* + y«-i,

we have, on substituting these in (48: 8),

A
(48: 9) Ei/i — — — [y-i + y»+» ~ 4(y0 + y*) + 7(yi + y»-i)

— 8(y« + y« + •
• + y»-i) + 8(y> + y6+ • • 4- yn-*)]

when »^6.
If the number of subintervals be less than six, the formulas for Em

are

A
(48: 10) £»/*= ——

— [y— i + y* - 4(y0 + y2) + fiyj, for n = 2.

A
(48: 11) Em— —— [y_i + y6-4(y 0 + y«) + 7(yi + yi) — 8y*],for n = 4.

90

The ordinates y_i and yB+i, which are outside the interval of integra-

tion, can be found in one or more ways. If the values of y are computed
from a formula and the formula holds outside the interval of integration,

then we merely compute y_i and yB+i from this formula by substituting

the proper values of x. But if we are given only a tabular set of y’s,

we find y_i and yB+ i by extrapolation, the former by using Newton’s

formula (I) and the latter by using Newton’s formula (II).

48d). Chevilliet’s Formula. The fundamental formula (48: 7) can

be transformed in still another way so as to yield a very simple formula

for £, rt .

Let us go back for a moment to formula (48: 3). Putting k=Xi,
*»,••• x„_i in this formula, we have

C Xt r A* A' * 1
J\ = 1 f(x)dx = 2 hf(x0 + -/"(*,) + -/*(*») + '

'

J,

/•*«

h = I f(x)dx - 2
" *1

af(*>) +-/"(**) +-n**) +
J,

7*/! = 1* f(x)dx = 2 [a/(*_i) + + ^/
iv(*-i) ]•

Adding these, we have
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(48: 12) I (
Xn

f(x)dx = [2hf(xi) + 2hf(xt) + • •
* + 2hf(xn-i) ]

Jx0

+ [f
»(Xl) +f"(Xs) + • •

• +/"(*»-i)]

+— [/
iv
(*i) + /*(*«) + •

• + /
iv
(*»-i) ] + • • •

= R + Ci + Ci + •
•

,
say.

The geometric interpretation of this formula is as follows : The integral

I represents the area under the graph of y=/(*) from x = x0 to x = xn .

The top bracketed line represents the sum of the areas of n/2 rectangles

having altitudes yif y3 ,
• •

• yn-i and bases of width 2h. The remaining

terms on the right-hand side represent the error committed by replacing

the area under the graph by the sum of the areas of these rectangles.

Let us now consider the geometric interpretation of our fundamental

formula (48: 7), which can be written in the form

A4
(

(48: 13) Eh 3 = — —
- \ 2hfiy

(xi) + 2 hf
iy(x3) + • + 2A/lv(xn_i)

180 l

+ —[/“(*i) +/vi
(^) + • •

• +/vi
(*»-.)]

2 A* )+— [/
viii(^) +/viii(

*8} + •
• +/viii

(*«-.)] + •

•

|

= -— [/? + ic, + -^C2 +•!.
180 L 7 42 J

This formula may be interpreted as follows: The sum 2hfiv (xi) +2hfiy (x»)

+ • •
• +2A/,v

(*n_i) represents the sum of the areas of n/2 rectangles

having altitudes yiiv
, y8

iv
,

• • y„-i
iv and bases of width 2h. The other

terms within the braces are correction terms. The whole series within

the braces therefore represents a close approximation to the area under

the graph of y=fiv(x) from x = xa to x = xn , the magnitude of the error

being (5/7)Ci+(37/42)C,.

Now if h is relatively small in comparison with the interval of integra-

tion b—a or xn —Xo, the correction terms Ci, Ct, etc. will be small. Hence
in such cases the area under the graph will be closely approximated by

the sum of the rectangles plus (2/7) Ci etc.

The true value of the area under the graph of y =fiv(x) is

/>.* =[/"'(*)J -H») “/"(a).
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Substituting this expression for the quantity enclosed by the braces

in (48: 13), we get

(48:14) Eu,~ -~[f"(b) -f"\a)\.

This is Chevilliet’s formula* for the error inherent in Simpson’s rule.

It is less accurate than any of the preceding formulas for Em, but has

one advantage not possessed by any of the others. That advantage will

become apparent in the following paragraphs.

We notice, incidentally, that if we double the number of subintervals

by decreasing h to half its previous value we cut down the error to one-

sixteenth of its previous value.

48e). Formulas in Terms of Two Computed Results. Suppose two
computations of a definite integral are made by Simpson’s rule, using a

different value of h for each computation. Let Ri, hi, E\ denote the

result, the value of h, and the error in the first computation, and let R»,

ht, Ei denote the corresponding quantities in the second computation.

Then by (48: 14) we have

Ei

Ei

hi

*

Hence if ht = hi/m, where m is a positive integer, we have

Ei — m*Ei.

Let I denote the true value of the given integral. Then for the two

computations we have

I — Ri + Ei = Ri + m*Et,

/-/?* + Ei.

Subtracting the upper equation from the lower and solving for E\, we
get

(48: IS) Ei =
Ri — J?i

m* — 1

From this general formula we can get particular ones by assigning

different values to m. Thus, for m = 2 we have

,
Rt - Ri

(48: 16) Ei - —— •

This formula tells us that if we compute the value of a definite integral

* Comptes Rendus 78(1874), p. 1841.
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by using a certain value for h and then compute it again by using twice

as many subdivisions, the error of the second result will be about 1/1 5th

of the difference of the two results.

In like manner, on putting m = 3 we find

(48: 17) E,
Rz — R i

80

Remarks. The reader should bear in mind that the three formulas

just derived are based on Chevilliet’s formula and that they are there-

fore no more accurate than it is. They will give reliable results if the

value of h in each computation is small enough for Chevilliet’s formula

to give a reliable result for the error. Formula (48: 16), for example,

fails to give the true value of the error in Example 2 of Art. 44, the

reason being that the values of h there used are not small enough near

the ends of the interval for Chevilliet’s formula to give a reliable result.

Of the several formulas derived in this article for the error in

Simpson’s rule the most reliable and useful is (48: 9). It gives the

principal part of the error in both magnitude and sign, and it involves

only the quantities used in the rule itself—with the exception of the

two extreme ordinates y_i and y„+i. These can usually be computed

directly from the integrand when given or else by extrapolation from

the tabular values.

49. To Find the Value of h for a Stipulated Degree of Accuracy in

the Integral. Suppose we should wish to know the proper value of h

to insure five-figure accuracy in the computed integral. Chevilliet’s

formula gives us a means of finding it.

If the analytic form of the function is known and the third derivative

is easily calculated, substitute in (48: 14) the stipulated E and the

calculated values of/' "(b) and /'"(a); then solve for h.

If the form of the function is not known, or if known but the third

derivative is not easily found, assume a convenient value, hi, for h

and find the corresponding Ei by means of (48: 9). Then if Ep is the

prescribed or stipulated error in the computed integral, we have

from (48: 14)

Ei_ V
Ep

~ k*
’

from which

(49 : 1 )

By means of this formula we can determine the proper value of h
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to insure a prescribed degree of accuracy in the computed integral,

provided h\ and h are small enough for Chevilliet's formula to give a

correct result.

y Xo* The Error Due to Inaccurate Data. In many problems to which

Simpson's rule is applied the given values of the function are less

accurate than Simpson's rule. In such cases it is useless to compute the

inherent error in the rule by any of the formulas so far given in this

chapter, because this would be less than the error due to the data.

To find the error due to inaccurate data we assume that each value of

y is affected with an error c. Then applying Simpson's rule to these

inaccurate y*s, we have

f 1/3
= “b *0 + 4()>1 + €i + Vz + €3 + ’ + y»-l + €n_l)

+ 2(y2 + €2 + V4 + €4 + • • + y«-2 + €1.-2) + yn + *«)

h
= — [y° + 4()»1 + >’3 + •

• + >’n-l) + 2(y2 + + yn-2) + yn]

h
.

+ ~ [*0 + 4(ci + «3 + •
• + €n- l) + 2 (c 2 + €4 + • '

* + €„_ 2) + €«) ] .

Hence the error due to the inaccuracy of the data is

(50: 1) Ed = — [c0 + 4(ci + €3 + «mi) + 2(€2 + €4 + * *
* + ^-2) + €n ]

.

If all these e’s should be of the same magnitude and sign, the maxi-

mum possible error due to the inaccurate y’s would be

hr I n \ (n — 2)~|

" 1 L
1 + 4

(7)
+ 2_

2“J
*

h — —(3m) = hm = (6 — a)t,

3

or

(50:2) (Ed)max * (J — a)e.

Such a result, however, would probably never occur, since the e’s

would not be all of the same sign, but would, on the contrary, be of

different signs and largely neutralize one another.

We shall now apply formulas (48:9) and (48:14) to the first example

worked in Art. 40.

Example. Compute by means of (48: 9) and (48: 14) the error in the

evaluation of Jl'
1
log, xdx by Simpson’s rule.
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Solution. We must first compute $-i and yn+i from the given function

y = log, x. For these we have

y_i = log. 3.8 = 1.33500107,

yH+i = log, 5.4 = 1.68639895.

The values of y from ya to yn inclusive are given in the table on page 121.

Substituting these y’s in (48: 9), we get

0.2
EVi = -—[3.02140002 - 4(3.03495299)

+ 7(3.04452244) - 8(3.05022046)

+ 8(1.52605630)]

= 0,00000015.

The true error was found in Art. 40 to be 0.00000018.

To compute the error by Chevilliet’s formula we first find J'"(x)

from the equation f(x) = log, x. We thus have

Hence

2 .

/'"(5.2) = = 0.0142239,3
(5.2)*

1 1
/"'(4.0) = — = — = 0.0156250,

4* 64

and therefore

(0 . 2)
4

E = - —(0.0142239 - 0.0156250)
180

= 0 . 00000001 .

This error is much too small, and the reason is that the value of h

in this problem is too large for Chevilliet’s formula to give a reliable

result for the error.

Suppose we wished to know the value of h necessary to give the

integral correct to ten decimal places. Since we have already found the

error corresponding to a particular value of h, we can find the desired

value by substituting in formula (49: 1). Here

hi = 0.2, Ei - 0.00000015, E, < 0.00000000005.
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Hence we have

, „ „ /o.oooooooooosy '4

h < 0.2 1
)

= 0.027.
\ 0.00000015 /

Since b—a — nh, we find that we should have to divide the interval

(4, 5.2) into more than 45 subintervals in order to get a result correct

to ten decimal places.

51. The Remainder Terms in Central-Difference Formulas (41 :1)

and (41 : 3). The remainder terms in these formulas can be found by
integrating the remainder terms in Stirling’s and Bessel’s interpolation

formulas from which (41: 1) and (41: 3) were derived. Since (41: 1)

is at least as accurate as (41 : 3), and since a more definite formula can

be derived for the remainder term in the latter than in the former, we
shall derive the remainder term for (41: 3) only and use it for com-
puting the error in both formulas. In Art. 30 we found the remainder

term in Bessel’s formula (VI) to be

Rn =
/j2n+2y(2n+2)(£)

^

(2n + 2)

Since f(x)dx is the quantity that is integrated by a quadrature

formula, it is plain that Rn{x)dx is the quantity which must be integrated

to find the inherent error in the quadrature; and since dx—hdv, we
have for the error in a single subinterval of width h

(51 /
*•+* /•

Rn(x)dx = h
J

1/2 ^2»+2y(2»+2>(£)

1/2 (2n + 2)!

(2n + 1)*\ 2Aj"+3
/

(;!"+*>(£)

(*' ” tX,! ”
t)

(2» + 2)!

(2»+ 1)
J

Let us put

(2»+l) 2'

Then

E =—-———

—

(2n + 2)

!

This is the error for a single subinterval of width h. Let Mn denote
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the maximum value of /
(!B+2) (x) in the interval (a, b). Then since

there are (b—a)/h subintervals from x= a to x — b, we have for the total

error in the interval (a, b)

(51:3)
2 h*n+iMn s , ,

E ^———Xb-a)\Vn \.
(2n + 2)!

From this general formula we get particular ones by assigning values

to n. Thus, if we include fourth differences in (41 : 2) and neglect all

higher differences, we put n = 2. Then (51 : 2) becomes

and therefore (51: 3) becomes

or, more simply,

(51:4)

191 h*M 2

E < (b ~ a
;

60480

h*Mt

Ea
h < (

b

- a).
316

In terms of differences this becomes

(51 : 5)
I
A‘y

|

Ea» < -4^-(i - a),

316

where A*y is the largest of the sixth differences.

If we include sixth differences in (41: 2) and neglect all higher dif-

fetences, then » = 3 and (51: 2) becomes

J

'in 1 9 25 49 2497

,

<' ~ 7>(” " " T “1ST

On substituting these in (51 : 3) we find

2497h*M s

,

Ea g (5 — c
3628800

(51: 6) £-‘ •=

In terms of differences this becomes

(51 : 7) Ea\< -——(b - a),
1453
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where A*y is the largest of the eighth differences in the interval (a, b).

When we stop with fourth differences in formula (41 : 1) or with

third differences in (41 : 3), the error is to be computed by (51:5); and
when we stop with sixth differences in (41: 1) or with fifth differences

in (41 : 3), the error is to be computed by (51 :7).

52. Expressions for the Error in Gauss’s Formula. Gauss’s quadra-

ture formula has been studied exhaustively by several eminent mathe-

maticians, and many expressions have been derived for the error in-

herent in it. The majority of these expressions, however, are of little

value from a “practical standpoint. The following two are the most use-

ful:

1. If f{x) does not change sign in the interval of integration (a, b),

the inherent error is*

(52: 1) Ea =
(.b - a) 2 "+l n\

2«+l L(» +!)(»+ 2) 2n.

rt)
(2*)!

where £ is some value of x between a and b.

2. If <f>(u) (see Art. 42) can be expanded into a convergent power

series, the principal part of the inherent error in Gauss’s formula is given

by the expression t

(52: 2) Ea =
(b - a)

(2«+ 1)2

*'
)

2

5 •

• (2n -1)f

Ltn+I /(» + 1)(« + 2) n{n - 1)

*»{l-3-

( ^2n42 /'

{
L’- +—

( In + 3
+

2n

where theVs are the coefficients in the power series

(52: 3) <t>(u + |) = Lo + Liu + + •
• + L2„u2n + • •

•
.

Even these two formulas have their drawbacks, for the first requires

that we find the (2»)th derivative of the given function and is further

impaired by the indefinite factor

/

(* w, (£). The second formula is definite

as far as it goes, but it requires us to expand cf)(u+ £) into a power series

—an easy matter in some examples, but practically impossible in others.

When the series converges rapidly, the teHm involving L?nf 2 in (52: 2)

may be omitted. Neither of these formulas applies when tlu* analytic

form of the function is unknown.

$ncyklop&die dtr Mathematischen Wissenschaften, II. 3.1, p. 68.

drived in Todhunter’s Functions of Laplace ,
Lame

, and Bessel
, p. 108.
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We shall illustrate the use of these formulas by, applying them to

the simple example worked in Art. 42.

Example. Taking n = S, find the error in the evaluation of

I
f.

18 dx

X

by Gauss’s formula.

Solution, (a). The (2»)th derivative of f(x) — l/x is/(l#> (x) = 101/x11
.

Then since b—a = 7 and h = 5 we have from (52: 1)

5! 8 10! 7n
r

51 t
.6-7-8-910. f

n ” TT .6-7-8-910J

10 !

The value of £ is somewhere between 5 and 12. On substituting these

extreme values of £ in this expression for Eg we find that the error lies

between 0.000058 and 0.0000000038. These limits are far apart and

the actual error is thus very indefinite. The true error was found in

Art. 42 to be 0.00000028.

(b). We shall next estimate the error by formula (52 : 2). In Art. 42

we found that 0(h) = 1/ (5+ 7u). Hence

From this series we see that

I*n
2_ /14\

l#

17X17/
and £s„+j

2/14V8

17X17/

Substituting these in (52: 2), we get

2 v 7 / 51 \*Uu\w . 1/ 14W42
,

20ME° -
17
X

11 X 2 10
1 1 • 3

-
5

-
7

* 9/ l\17/
+

"8\17/ \13
+T))

* 0.00000017 + 0.00000008 = 0.00000025.

This result agrees well with the actual error 0.00000028 found in

Art. 42. It will be found in practice that formula (52 : 2) is far superior

to (52: 1).
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53. The Remainder Term in Euler’s Formula. Malmsten’s expression

for the remainder after n terms in Euler’s formula of summation and
quadrature is

(53: 1) Rn = AjHh,n+lf
(In)(a + 6h), 0 < 0 < 1,

for a single subinterval of width h.

Let M denote the numerically greatest value of fl,n) (x) in the whole

interval (a, b). Then for the n subintervals we have

(53: 2) Rn g nAtnhin+1M,

or, since n = (b—a)/h,

(53:3) R„ g AuhtnM(b - a).

Here A an has the following values

:

A a

1

A* = + A t

720

1

30240
At = -\-

1

1209600

-4 10 =
1

47900160

More useful, perhaps, than formula (53: 3) is the following working

rule due to Charlier :*

In stopping with any term in Euler’s formula the error committed is less

than twice the first neglected term.

Hence we get the most accurate result by stopping with the term

just before the smallest, so that the first neglected term is the smallest

of all.

We shall now show that the first two terms of Euler’s formula will

give a more accurate result than Simpson’s rule.

Putting » = 2 in formula (53: 3), we have

h*M
Rt £ Ath*M(b - a) - —(b - a),

where M denotes the greatest numerical value offv
(x) in the interval

(a, b).

The remainder term in Simpson’s rule is (Art. 48)

h*M
E,n ~

K0
(i ” a) '

Hence the inherent error in Euler’s formula for only two terms is just

one fourth that in Simpson’s rule.

* Meckanik des Himmels, II, pp. 13-16.
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EXAMPLES ON CHAPTER Vm
1. Estimate the inherent errors in your answers to Example 4 of

Chapter VII and compare these errors with that found in Example 21

of Chapter I.

2. Compute the inherent error in your answer to Example 6 of

Chapter VII.

3. Fstimate the accuracy of your answer to Example 8, Ch. VII.



CHAPTER IX

THE SOLUTION OF NUMERICAL ALGEBRAIC
AND TRANSCENDENTAL EQUATIONS

I. EQUATIONS IN ONE UNKNOWN

54. Introduction. It is shown in algebra how to solve literal equations

of all degrees up to and including the fourth; and it is also shown how
to compute by Horner's method the roots of numerical equations of

any degree. Algebra is silent, however, on the solution of such types of

equations as ax+b log x = c, ae tan x = 5, etc. These are transcen-

dental equations
,
and no general method exists for finding their roots

in terms of their coefficients. When the coefficients of such equations

are pure numbers, however, it is always possible to compute the roots

to any desired degree of accuracy.

The object of the present chapter is to set forth the most useful

methods for finding the roots of any equation having numerical

coefficients. Since Horner’s method is explained in all college algebras,

and since it can not be applied to transcendental equations, we shall not

consider it here.

55. Finding Approximate Values of the Roots. In finding the real

roots of a numerical equation by any method except that of Graeffe,

it is necessary first to find an approximate value of the root from a

graph or otherwise. Let

(55: 1) /(*) - 0

denote the equation whose roots are to be found. Then if we take a

set of rectangular coordinate axes and plot the graph of

(55: 2) y - /(*),

it is evident that the abscissas of the points where the graph crosses

the x-axis are the real roots of the given equation, for. at these points y
is zero and therefore (55: 1) is satisfied. Approximate values for the

real roots of any numerical equation can therefore be found from the

graph of the given equation. It is not necessary, however, to draw the

complete graph. Only the portions in the neighborhood of the points

where it crosses the x-axis are needed.

Even more useful and important than a graph is the following

fundamental theorem:

Iff(:0 is continuous from x = a to x = b and iff(a) and f(b) have opposite

signs
, then there is at least one real root between a and b

.

171
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This theorem is evident from an inspection of Fig. 4, for if f(a) and
f(b) have opposite signs the graph must cross the x-axis at least once
between ** a and * » b.

-

y

L A

1

4

fib)

X
0 V

Fig. 4.

When /(*) is the sum of two or more functions, it is usually better
to write /(x) =0 in the form

(55: 3) /,(*) = /,(*)

and then plot on the same axes the two equations

?»=/»(*)•

The abscissas of the points of intersection of these two curves are the
real roots of the given equation, for at these points yi=y» and therefore

fi(x) =/»(*). Hence (55: 3) is satisfied and consequently /(x) =0 is

likewise satisfied.

We shall now apply the foregoing methods to two examples.

Example 1. Find approximate values for the real roots of

x logio * = 1.2.

Solution. Writing the equation in the form /(x) *x logio *—1.2, we
first compute a set of corresponding values of * and/(*), as given below.
Since the logarithms of negative numbers are imaginary, it is evident
that only positive values of * can be assigned.

X /(*) X m
0 1.0 -1.2
0.2 2 -0.6
0.4 3 +0.23
0.6 4 +1.21
0.8 — 1.28
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Since /(2) and/(3) have opposite signs, a root lies between 2 and 3,

and this is the only real root. There is no need of drawing the graph

in this example.

Example 2. Find the approximate value of the root of

3x — cos x — 1 = 0.

Solution. Since this equation is the difference of two functions we
can write it in the form

3x — 1 = cos x.

Then we plot separately on the same set of axes the two equations

yi = 3* - 1,

yi = cos *.

The abscissa of the point of intersection of the graphs of these equations

is seen to be about 0.61 (Fig. 5).

Y

Fig 5.
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Of course we could also find this approximate value by computing a

table of values of the function /(*) *3x— cos x— 1 and noting the

change in sign of/(#), as in Ex. 1.

S6. The Method of False Position (Regula Falsi). The oldest method

for computing the real roots of a numerical equation is the method of

false position, or “regula falsi.” In this method we find two numbers

xi and x 2 between which the root lies. These numbers should be as

close together as possible. Since the root lies between x\ and X 2 the graph

of y=/(^) must cross the #-axis between x = xi and * = *2 , and y\ and

y2 must have opposite signs.

Now since any portion of a smooth curve is practically straight for a

short distance, it is legitimate to assume that the change in f(x) is

proportional to the change in x over a short interval, as in the case of

linear interpolation from logarithmic and trigonometric tables. The
method of false position is based on this principle, for it assumes that

the graph of y=f{x) is a straight line between the points (*i, yi) and

(*2 , yi), these points being on opposite sides of the *-axis.

To derive a formula for computing the root let Fig. 6 represent a

magnified view of that part of the graph between (xi 9 y\) and (*2 , y*).

Then from the similar triangles PMS and PRQ we have

MS ^ RQ h X2 — X\

MP~-RP’
°r

TyTT "
T yi I + \y*\'

(*2 - *1) 1 yi 1

I yi I + 1 yt I

(56:1) /. h
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The value of the desired root, under the assumptions made, is

Hence

(56: 2) x

x— X\-\-MS= X\-\-h.

„ (** ~ *i)
I
yi

I

Xy i ; ;
•

I y\ I + 1 yt |

This value of x is not, however, the true value of the root, because
the graph of y —f(x) is not a perfectly straight line between the points
P and Q. It is merely a closer approximation to the true root.

In the practical application of the reguia falsi method we compute a
short table of corresponding values of x and f(x) for equidistant values
of x—units, tenths, hundredths, etc. Then by means of (56: 1) we
compute corrections to be applied to the previously obtained ap-
proximate values. The following examples should make the method
clear.

Example 1. Compute the real root of

x logio x - 1 . 2 = 0

correct to five decimal places.

Solution. The short table in Example 1 of the preceding article shows
that the root lies between 2 and 3, and that it is nearer 3. Hence we
make out the following table and then compute the corrections by
(56: 1).

X y

1st 2 -0.6

approx. 3 +0.23

Diff. 1 0.83

2nd 2.7 -0.04

approx. 2.8 +0.05

0.1 0.09

3rd

approx.

2.74 -0.0006

2.75 +0.0081

0.0087

hi
1 X 0.6

0.83
0.72.

*<»> = 2 + 0.72 = 2.72.

0.1 X0.04
hi = 0.044.

0.09

*< ! > = 2.74.

0.01 X 0.0006
hi = 0.0007

0.0087

*i*> = 2.74 + 0.0007 = 2.74070.01



176 SOLUTION OF NUMERICAL EQUATIONS [Chap. IX

2.7406 -0.000039 0.0001 X 0.000039
4th

2.7407 +0.000045 0.000084
approx.

0.0001 0.000084 = 0.000046.

*«> = 2.7406 + 0.000046

= 2.74065.

Remark. In examples of this kind it is necessary to use logarithms to

more decimal places with each succeeding approximation. In this

example six-place logarithms were used in the last approximation.

Example 2. Find the real root of the equation

3x — cos *—1 = 0.

Solution. In Ex. 2 of the preceding article we found the approximate

value of this root to be 0.61. Hence we begin by computing the follow-

ing short table of corresponding values of * and /(*) = 3*— cos *— 1 =y.

It is evident from the table that the root lies between 0.60 and 0.61.

Hence we proceed with the first approximation by the regula falsi

method.

X /(*)

0.60

0.61

0.62

-0.025

+0.010
+0.046

1st

approx.
Diff.

*

0.60

0.61

y
-0.025

+0.010

0.01 X 0.025-
hi = 0.0071

0.035

0.01 0.035 *<l > = 0.60 + 0.0071 = 0.607

2nd
approx.

0.607

0.608

-0.00036

+0.00321

0.001 X 0.00036

0.00357

0.001 0.00357 - 0.000101.

*<» = 0.6071.

3rd 0.6071 0.00000 h, - 0.

approx. 0.6072 0.00035 *<*> = 0.60710.

0.0001 0.00035
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57, Solution by Repeated Plotting on a Larger Scale. The following
method is the graphical equivalent of the regula falsi method and* has
the advantage of giving a visual representation of the approximating
process.

Suppose an approximate value of the root has been found from a
graph or otherwise. Plot on a large scale a small part of the graph of

y—fW f°r values of x near the desired root, so that one can see more
clearly about where the graph crosses the x-axis. An additional figure

of the root can be read from this graph. Then plot on a still larger

scale a small part of the gria.ph for values of x near the improved value
of the root (the value just found), and continue the process in this
manner until the root has been found to as many figures as desired. The
following example should make the method clear.

Example . Find the positive real root of

/0.7854-xv/T^rx*\
x — cos I ] = o.

V 1 - 2x2 )

Solution . We first compute the value of the left member for several

values of x
}
as given in table (1). This table shows that a root lies be-

tween 0.5 and 0.6. Hence we plot the graph of the given equation from
x = 0.5 to x = 0.6 and assume it to be a straight line within this interval.

The result is Fig. 7 (a), and it shows at a glance that the root is about
0.56 or 0.57. We therefore compute table (2) and plot the results as

X fix) X /(*)

(P 0.4 - 0.42 (3 ) 0.579 -0.001
0.5 -0.26 0.580 +0.003

0.6 +0.14

(2 ) 0.56 -0.092 (4) 0.5793 -0.0005
0.57 -0.030 0.5794 + 0.0003

0.58 +0.003

shown in Fig. 7 (b). This graph shows that the root is about 0.579.

Continuing the process in this manner by computing tables (3) and (4)
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and plotting the results on still larger scales as shown in Figs. 7 (c)

and 7 (d), we find the desired root to be jc = 0.57936 to five figures.

i

This method and the regula falsi method are particularly valuable

for finding the roots of complicated equations such as the one solved

above.

58. The Newton-Raphson Method. When the derivative of f(x) is

a simple expression and easily found, the real roots of/(x) = 0 can be

computed rapidly by a process called the Newton-Raphson method.
The underlying idea of the method i^due to Newton, but the method
as now used is due to Raphson.*

*
Set* Cajon's History of Mathematics, p. 203 .
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To derive a formula for computing real roots by this method let a
denote an approximate value of the desired root, and let h denote the
correction which must be applied to a to give the exact value of the
root, so that

x = a + h.

The equation /(*) = 0 then becomes

/(a + h) = 0.

Expanding this by Taylor’s theorem, we have

/(a + h) = /(a) + hf'(a) + -^-/"(a + Oh), 1

.

Hence

/(a) + hf'(a) + ~f"(a + Oh) = 0.

Now if h is relatively small, we may neglect the term containing A*

and get the simple relation

/(a) + hf'(a) = 0,
from which

(58: I)
/(a)

/'(a)

'

The improved value of the root is then

(58: 2) <ii = a + h t = a

The succeeding approximations are

/(«)

/'(«)

’

Ci = ax *f* ht = fli
— /(ax)

/'(a,)

• • • an = a»~i

as = — /(ax)

/'(a,)’

/(a»-i)

/'(a»-0

'

Equation (58: 1) is the fundamental formula in the Newtou-Raphson

process. It is evident from this formula that the larger the derivative

/'(*) the smaller is the correction which must be applied to get the

correct value of the root. This means that when the graph is nearly

vertical where it crosses the x-axis the correct value of the root can be

found with great rapidity and very little labor. If, on the other hand,

the numerical value of the derivative /'(*) should be small in the

neighborhood of the root, the values of h given by (58: 1) would be

large and the computation of the root by this method would be a slow
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process or might even fail altogether. The Newton-Raphson method
should never be used when the graph of f(x) is nearly horizontal where

it crosses the x-axis. The process will evidently fail if/'(x)=0 in the

neighborhood of the root. In such cases the regula falsi method should

be used.

We shall now apply the Newton-Raphson method to two examples.

Example L Compute to four decimal places the real root of

x2 + 4 sin x = 0

.

Solutiojt. Since the term x 2
is positive for all real values of x

,

it is

evident that the equation will be satisfied only by a negative value of x.

We find from a graph that an approximate value of the root is —1.9.

Since /(x)=x 2 +4 sin x and /'(*) = 2x+4 cos x, we have from (58: 1)

(- 1.9) 2 + 4 sin (- 1.9)
__

3.61 - 3,78
1

2(— 1.9) + 4cos(- 1.9)

“ ~ - 3.8 - 1 293

= - 0,03.

/. «, = - 1.9 - 0.03 = - 1.93.

(- 1.93) 5 + 4sin(- 1.93) _ -0.0198
h

2(— 1.93) + 4cos(- 1.93)
“

-5.266
= - 0.0038.

ajt = - 1.9338.

This result is correct to its last figure, as will be shown later.

Example 2. Find by the Newton-Raphson method the real root of

3* — cos £—1 = 0.

Solution. Here
f(x) = 3x — cos x — 1,

f'(x) = 3+ sin x.

We found graphically (Fig. 5) that the approximate value of the root

is 0.61. Hence
3(0.61) - cos (0.61) - 1 0.010

1 ~ ”
3 + sin (0.61) 3.57

= - 0.00290.

Qi —0.61 — 0.0029 — 0.6071.

h _ 3(0.6071) - cos (0.6071) - 1

3 + sin (0.6071)

= 0.00000381.

.*• 02 = 0.60710381 .

This result also is true to its last figure.
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It will be observed that the root was obtained to a higher degree of

accuracy and with less labor by this method than by the regula falsi

method.

59. Geometric Significance of the Newton-Raphson Method. The
regula falsi method assumes that the graph of the given function is

replaced by the chord joining
(x\ , yy) and (o

,

2 , yi). No such geometric
assumption was made in deriving the formula for computing the roots

by the Newton-Raphson method, but the formula has a simple geo-

metric significance nevertheless.

Let fig. 8 represent a magnified view of the graph of y=/(x) where it

crosses the x-axis. Suppose we draw a tangent from the point P
whose abscissa is a. This tangent will intersect the x-axis in some point

T. Then let us draw another tangent from Pi whose abscissa is OT.
This tangent will meet the x-axis in some point T\ between T and S.

Then we may draw a third tangent from Pt whose abscissa is OTi,
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this tangent cutting the x-axis at a point 7* between Ti and 5, and so

on. It is evident intuitionally that if the curvature of the graph does

not change sign between P and S the points T, Ti, Tt ,

• • • will approach

the point S as a limit; that is, the intercepts OT, OTi, 07*, • • • will

approach the intercept OS as a limit. But OS represents the real root

of the equation whose graph is drawn. Hence the quantities OT, OTi,

OTt, • • • are successive approximations to the desired root.* This is

the geometric significance of the Newton-Raphson process.

To derive the fundamental formula from this figure let MT— hi,

TTi= hi, etc. The slope of the graph at P is /'(a). But from the figure

we have

/(a)
PM — f{a), and slope at P — tan Z XTP

hi

Hence

fid)

hi
or hi

fid)

f'ia)

which is the fundamental formula of the Newton-Raphson method.

From the triangle PiTTi we find in exactly the same way

/( fl0
hi =

/'(a,)

From the preceding discussion it is evident that in the Newton-

Raphson method the graph of the given function is replaced by a

tangent at each successive step in the approximation process.

60. The Inherent Error in the Newton-Raphson Method. If a is an

approximate value of a root offix) = 0 and h is the necessary correction,

so thatf(a+h) =0, then we have by Art. 58

(60: 1) fid) + hf'ia) + y/"(o + Oh) 0, 0 < 9 < 1

.

In the Newton-Raphson method we neglected the term involving h*

and got an approximate value hi from the equation

(60: 2) fid) + hif'ia) - 0.

Subtracting (60: 2) from (60: 1), we have

* The*Mumptk>n that the curvature does not change sign between P and 5 is not a

necessary condition for convergence. The process will still converge to the true value

of the root when there is a point of inflection in the arc PS, but the limit will be ap-

proached from both sides.
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(A - *,)/(«) + —j"{a + Oh) = 0.

(60:3) h — hi
,,/"(« + eh)
h2

2m
Now since h is the true value of the required correction and hi is its

approximate value, it is plain that- h — hiis the error in hi. The error in

hi is thus given by (60: 3). Let M denote the maximum value offix)
in the neighborhood of o+Aj. Then

(60: 4) h — h x -
k2M
2m'

Our next problem is to express this error in terms of the known
quantity hi.

Clearing (60: 4) of fractions and transposing, we have

Mh* + 2f’{a)h = 2f'{a)hi.

h =
-/'(a) +v/[/'W] 2 + 2M/'(fl)*,

M
i r / 2Af*,\1,r

l--[-m +/w(.
+7Sf) J.

Now expanding the quantity [\ + 2Mhi/f'(a)] 112 by the binomial

theorem, we have

1 T / Mki 1 MW 1 Jiwyi
h =

Ml n<l) + /,(a)

V
1 + " T [f'(a)Y

+
2 If(a) ]*)J

1 / 1 M 2hi2 1 M*A,» \
= -(-m +m + Mhi - -— +

-

Mhi2 M 2
hi*

hi — — .
— +

Hence

(60:5)

?m 2lf'W

Error = h — hi = — hi8 Mthi
i

+
2

m

2 [f\a)Y

Since hi is always a small decimal, it is evident that the principal

part of the error is contained in the first term on the right-hand side of

(60: 5), so that we may neglect the term involving hi*. The formula for

the error thus reduces to t

Mh i*

Ei g
; 2m(oO: 6)
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This is the error in a\. The error in a, is therefore

(60: 7) En g
Mhn

*

2/'( a„_i ) I

Now in most equations which one would solve by the Newton-Raphson
method the quantity M/2f’{a) is not greater than 1. Suppose, therefore,

that |Af/2/'(o»_i)
|
g 1. Then (60: 7) reduces to

(60:8) |£»|^An*.

This result is most important; for it tells us that if h„ begins with m
zeros when expressed as a decimal fraction, then A»* begins with 2m
zeros. This means that when the first significant figure in h is less than

7, we may safely carry the division of /(a„_i)//'(o„_i) to 2m decimal

places; for the error in the quotient will be less than half a unit in the

2wth decimal place. Stated otherwise, the number of reliable significant

figures in h is equal to the number of zeros between the decimal point and

first significant figure, provided the number of reliable figures in both

/(a„_i) and /'(a„_i) is as great as the number of zeros preceding the

first significant figure in h.

We thus have a simple method for determining the accuracy of the

roots found by the Newton-Raphson method, and this fact makes this

method much superior to the regula falsi method when the root is

desired to several decimal places.

It is now clear why we were able to say in Exs. 1 and 2 of Art. 58

that the results obtained were true to the last figure in each case.

61. The Method of Iteration. When a numerical equation f{x) = 0

can be expressed in the form

(61: 1) * - *(*),

the real roots can be found by the process of iteration. This is the

method which was used for inverse interpolation in Art. 24. The process

is this: We find from a graph or otherwise an approximate value Xo

of the desired root. We then substitute this in the right-hand member
of (61 : 1) and get a better approximation x(l

>, given by the equation

x (1> = ^(*0)

.

Then the succeeding approximations are

*<»> = *(*«>),

*<“> - *(*<-»).
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We shall apply the process to two examples.
Example 1. Find by the method of iteration a real root of

lx — logio x = 7.

Solution. The given equation can be written in the form

x = ^(logio x + 7)

.

We find from the intersection of the graphs yx = 2x-7 and y» = logi« x
that an approximate value of the root is 3.8. Hence we have

*<” = 4(log 3.8 + 7) = 3.79,

* (,) = $(l°g 3.79 + 7) = 3.7893,

*<*> = |(log 3.7893 + 7) = 3.7893.

Since xw is the same as x n)
, we do not repeat the process but take

3.7893 as the correct result to five figures. The iteration process is the
shortest and easiest method for working this example.

Example 2 . The method of iteration is especially useful for finding

the real roots of an equation given in the form of an infinite series. To
find an expression for the probable error (see Art. 101) of a single

measurement of a set, one procedure is to find the real root of the follow-

ing equation (see page 319)

:

or

( 1 )

P* P* P
7

P* P
S1

P
3
+

10 42
+

216 1320
+ • • • = 0.4431135,

__
P

-

p
4

p
7

p^_P- T
-

10
+
42~¥i6

+
1320

+ 0.4431135.

We shall now find the value of p to six decimal places.

Solution. Neglecting all powers of p higher than the first, we find an

approximate value of p to be 0.44. Hence we start with this value and

substitute it in the right-hand member of (1). The result is

(0.44)* (0.44)* (0.44)
7

pii) —
3 10 42

= 0.4699 = 0.47. say.

Then the second approximation is

(0.47)* (0.47)*
,
(0.47)

7

»«)

3 10

0.47554 - 0.476, say.

(0.44)*
_

(0.44) 11

216
^

1320
+ 0.4431

(0.47)*
^

(0.47) 11

42 216 1320
+ 0.44311
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Writing (1) in the form

p = *G>),

we find the succeeding approximations to be

p<» = *(0.476) = 0.4767,

p«> - *(0.4767) = 0.47689,

p<»> = *(0.47689) = 0.476927,

p<« = *(0.476927) * 0.476934,

pC) = *(0.476934) = 0.476936.

This last value is correct to its last figure.*

The reader will observe that the iteration process converges slowly

in this example. This is due to nature of the given equation. In Ex. 1

the convergence was rapid.

Note. Usually there are two or more ways in which an equation

/(x) =0 can be written in the form x=*(x). It is not a matter of indif-

ference as to which way it is written before starting the iteration

process, for in some forms the process will not converge at all. An
example of this is given in Art. 64.

62. Convergence of the Iteration Process. We shall now determine

the condition under which the iteration process converges. The true

value of the root satisfies the equation

x = *(x),

and the first approximation satisfies

x (,) = *(xo).

Subtracting this equation from the preceding, we have

(62: 1) x — x (1) = *(x) — *(xo).

By the theorem of mean value the right-hand member of (62 : 1) can

be written

*(x) — *(x0) = (x — X»)*'tto), Xo ^ £.0,
^ *•

Hence (62: 1) becomes

x — x<*> * (x - X,)*'(&>) •

A similar equation holds for all succeeding approximations, so that

* The value ofp correct to ten decimal places is 0.4769362762.
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* - *<*> - (* -

* ~ *“» - (* ~ *<*>)*'({,),

X - X<"> - (x -

Multiplying together all these equations, member for member, and
dividing the result through by the common factors x—x(t)

, x—x<*\
• • • *—x(,,- 1)

f we get

(62: 2) * - *<»> - (* - x.)*'({D)*'(li)
• • •

Now if the maximum absolute value of <t>

f
(x) is less than 1 throughout

the interval (x0 , *), so that each of the quantities <£'(£0. etc. is

not greater than a proper fraction m, we get from (62 : 2)

(62: 3) |
x — x (n)

| ^ |
x — x0

1
m".

We can therefore make the error x—

x

(B) as small as we please by
repeating the iteration process a sufficient number of times.

The condition, then, for convergence is that </>'(*) be less than 1 in

the neighborhood of the desired root, the smaller the value of 0'(x)

the more rapid the convergence. This condition was satisfied in

Examples 1 and 2 above.

II. SIMULTANEOUS EQUATIONS IN SEVERAL UNKNOWNS

The real roots of simultaneous algebraic and transcendental equations

in several unknowns can be found either by the Newton-Raphson
method or by the method of iteration. We shall give an outline of each

method for the cases of two unknowns and three unknowns. The reader

will have no difficulty in extending both methods to the case of any

number of unknowns should the necessity arise for doing so.

63. The Newton-Raphson Method for Simultaneous Equations.

Let us consider first the case of two equations in two unknowns. Let

the given equations be

[63: 1) 4>(x, y) = 0,

(63:2) •• 0.

Now if #oi y® he approximate values of a pair of roots and h 9 k be

corrections, so that

* — *o + K

y * yo + k.
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then (63: 1) and (63: 2) become

(63: 3) 4>(x0 + h, y0 + k) = 0,

(63: 4) t(x0 + h, y„ 4- ft) = 0.

Expanding (63: 3) and (63: 4) by Taylor’s theorem for a function of

two variables, we have

(63: 5) ^(*o + h, yo + k) — 4>{*o, yo) + h
^
+ h

(dy)

+ terms in higher powers of h and ft = 0.

(63: 6) + h, yo + ft) = yj/{x0, y0) + h
^
+ ft (~^

+ terms in higher powers of h and ft = 0.

Now since ft and ft are relatively small, we neglect their squares, pro-

ducts, and higher powers, and then (63 : 5) and (63 : 6) become simply

(63: 7) 0 /d<f>\

+ A
(
—

)
= 0,

o \oy/o

/ty\ /ty\
#(*«, yo) + ft(-) + ft (—

)
= 0.

\dx/ 0 \dy/o
(63: 8)

Solving these by determinants, we find the first corrections to be

—
<t>{*o» yo)

(63 : 9)

(63 : 10)

where

hi =

ki

*t>\ /W
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Additional corrections can be found by repeated application of these
formulas with the improved values of x and y substituted at each step.

The notation (d<f>/dx) o means the value of d<f>/dx when xq and yo
are substituted for * and y. Similarly, (d<f>/dx)i means the value of

d<f>/dx when x = x(l)
, y = y

(1)
;
and so on.

In the case of three equations in three unknowns,

</>(*. y, z) = 0,

\Kx, y,z)= 0

,

x(x, y, a) -= 0,

let h, k, l, denote corrections to the approximate* value?- x0 . yo. *o. re-

spectively. Then proceeding exactly as in the case of two equations

we get the three simple equations

<t>(xo, Vo, Zo) + h -1- k + l
^
= 0,

\dx/o \dy/o \dz/o

«x^,*) + *Q+»^) +;Q- o,

x(«., «.) + h0+ k0I

+ I0I

- 0,

for determining the first corrections hi, ku h. The process may be

repeated as many times as desired.

We shall now apply this method to a pair of simultaneous equations,

one transcendental and the other algebraic.

Example. Compute by the Newton-Raphson method a real solution

of the equations

(
x + 3 log io x - y

2 = 0,

v 2 jc
2 — xy — 5x + 1 = 0.

Solution. On plotting the graphs of these equations on the same set

of axes, we find that they intersect at the points (1.4, — l.S) and

(3.4, 2.2). We shall compute the second set of values correct to four

decimal places. Let

( 1)

(2)

Then

4>(x, y) = x + 3 logio * - y
4
,

Hx> y) = 2*2 - xy - 5x + 1

.
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d<l> 3M

[Chap. IX

dx
1 H } where M — 0.43429,

x

d<t>

Ty
~ V*

— = 4x — y — 5,
— = — at.

dx

Now since *0 ”=3.4, yo = 2.2, we have

^(*0, yo) = 0.1545, ^(*0 , yo) = — 0.72,

Substituting these values in (63: 9), (63: 10), (63: 11), we find

hi = 0.157, ki = 0.085.

Hence

xw = 3.4 + 0.157 = 3.557, y<» = 2.285.

Now substituting a;
(1 > and y

{,) for x and y in 4>{x, y), ^(x, y), d<fr/dx,

etc., we get

<t>(x<", y<”) = - 0.011, *(a+>, y<‘>) = 0.3945,

Substituting these in (63: 11), (63:9), (63: 10), we get

hi = - 0.0685, kt = - 0.0229.

Hence
% *<*> = 3.4885, y

(2) = 2.2621.

Repeating the computation with these improved values of a: and y.

we find

ht = - 0.0013, = - 0.000561.

Hence the third approximations are

x«> = 3.4782, y<*> = 2.26154,

and these are correct to the last figure.
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64 . The Method of Iteration for Simultaneous Equations. In the

case of two equations

</>(x, y) = 0,

\K*. y) = o, f

we first write the given equations in the forms

x « F x{x, y),

y = Ft(x, y)

.

Then if *9, y<> be the approximate values of a pair of roots, improved
values are found by the steps indicated below:

1st 1f
* (1) = ^iUo, yo),

approx. 1
{
yW = F,(*U>, y0);

2nd
^

(
*< 2 > = y<»>),

approx.
{ y
m = F2(*<*>, y<‘>):

etc.

If we are given three equations

<#>(*, y, z) = 0,

+(*, y, 2) = o,

xt*. y, 2) = 0,

we would first write them in the forms

x = Fi(x, y, z),

y = Ft(x, y, 2)

,

2 - Fi(x, y, 2).

The successive steps in the computation would then be:

1st

approximation

2nd

approximation

= Fi(x0, ya, 20),

yW = F2(*<», yo, zo),

2C» - F»(* (1)
, ytl\ *0);

*(2) II yw ,
2<‘>)

y<2> = Fj(* (,)
, y
w

. 2 (»),

S (2) = Fa(* (,)
» yw ,

2 (t)
);

etc.

Weshall now apply the iteration process to the pair of equations which

we have already solved (for one pair of roots) by the Newton-Raphson

method:
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4>(x, y) - x + 3 logio x - y*,

'K%> y) = 2x* — xy — 5x + 1

.

{Chap. IX

Solution. We start with the approximate values x0= 3.4, yo-2.2, as

indicated by the intersection of the graphs. In our next step we are

confronted with several possibilities, for the two equations can be

written in the forms x= Fi(x, y), y = Ft(x, y) in several ways. In the

absence of further information we start out with the simplest forms,

namely

x = y
i - 3 logio x,

y = — + 2x- 5.
x

Then we have

* (l > = (2.2) 2 - 3 log, o 3.4 = 3.25,

y
(1) = r-7r + 2(3-2S) - 5 = 1.81;

3.25

*«> = (1.81)* - 3 log, o (3.25) = 1.74,

1

y
m + 2(1.74) - 5 = - 0.95.

1.74

These values of * and y are evidently getting worse with each applica-

tion of the iteration process. We must therefore write the given

equations in some other form before attempting the iteration process

again.

Without trying all possible forms we will make a fresh start with the

only forms that will make the process converge, namely

* = j/'
x(y + 5) — 1

y = Vx + 3 logio *•

Then the successive approximations are

... J3A(2.2 + 5)^1
*a> = y =, 3.426,n 1

y
(1> = V3.426 + 3 logn 3.426 - 2.243;

/3. 426(2. 243 + 5) - 1
,«) = Y — 3.451,

yw * V3.451 + 3 logio 3.451 * 2.2505;
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x (i) = 3.466, y<»> = 2.255;

x (4) = 3.475, y«> = 2.258;

.v<‘> = 3.480, y<« = 2.259;

•r
Ul = 3.483^ y<«> = 2.260.

Here it is evident that the iteration process converges very slowly in
this example, for after having applied the process six times we have
added only one reliable figure to the approximate roots we started with.
This example brings out two important facts in connection with the

method of iteration. The first is that we must not start out blindly in
working a problem by this method, for instead of improving the roots
at each step we might make them decidedly worse. The second im-
portant fact brought out is that the iteration process should not be
applied at all in some examples, for the convergence might be too slow,
as was the case above. All this leads us to a consideration of the con-
ditions under which the process converges. Having these conditions
at hand, we can decide in advance as to the advisability of attempting
a problem by iteration.

65. Convergence of the Iteration Process in the Case of Several
Unknowns. To find the conditions for convergence in the case of two
equations, we write them in the forms

x = Fi(x, y),

y = H*, y)•

These equations are satisfied by the exact values of the pair of roots

*. y. The first approximations satisfy the equations

* (I > = Fi(x0 , y0),

y
(1) = Fi{x0 , y0).

Subtracting these equations from the corresponding equations above,
we have

(65: 1) x — xw = Fi{x, y) - Fi(*o, yo),

(65: 2) y
- yd) = Fi(x, y)

- F5(*0, yo)

.

Now applying to the right-hand side of the first equation the theorem
of mean value for a function of two variables, we have.

dF\ d'Pi

y) - F\{xQ} y0) = (* - aoH 1“ (? ~ Vo)~ f

dx dy
where
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dFi _ dF} [xp + 6(x - Xp), Vq + 6{y - yo)]
Q ^ ^ j

dx dx

and

dFi _ dFi[xp + 9(x — So), y0 + fl(y — Vo)l

8 y dy

In a similar manner we get

dT?* d“F‘i

Pt(x, y)
- Fi(xo, y0) = (x - xo)—1 + (y - yo)— •

dx ay

Substituting these expressions for the right-hand members of (65: 1)

and (65: 2), we get

6F t dh
x — x< l) = (

x

— :ro) 1- (y — yo)—

»

dx dy

dFt dFi
y - y(i) = (x - *„)-—I- (y - yo)—- •

dx dy

Adding these two equations and considering only the absolute values

of the several quantities, we have

\dFi
(65: 3) |

x — x (l)
| + | y — y

0 )

dFi

dx
£ I

* - *o I

j|
+

+

111}

r
dP2

dy

Now let the maximum value of either \dF\/dx\+ \dFi/dx\ or

\dFi/dy |+ |
dFt/dy

|
be a proper fraction m for all points in the region

(*0 f x) and (yo, y)> Then (65: 3) becomes

|
x - xw

| + | y - y
(1)

|'S »{ I
* - *o| + | y — yo| }

.

This relation holds for the first approximation. For the succeeding

approximations we have the similar relations

|
x - *<«

| + |y — y
J |^*»{!* — * (,)

I + I y - y
(,)

I }

,

|
X — x (,)

|
t
+ | y — y

(,)
| ^ m

{ |
x — * (2)

| + | y — y
(,)

| }

,

|
x — *<">

| + | y — y
U)

|
g m{

\
x — x ( "-1)

| + | y — y ("-1)
| }

.

Now multiplying together all these inequalities, member for member
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and dividing through by the common factors
{
|*-*< l > 1+ L

{ |+ |y-y(1
>

| } , etc., we get

I
x - x'

n)
| + |

v - y<">
| g m»{

|
* - .r»| + | y - y0

| }
.

Since m is a proper fraction, it is clear that we can make the right-

hand member of this inequality as small as we please by repeating the
iteration process a sufficient number of times. This means that the

errors |*—

x

<n)
|
and |y—

y

(n)
|
can be made as small as we like.

The iteration process for two unknowns therefore converges when,
and only when, the two conditions |dFj/d*

|+ |djyd*
|
< 1 and

\BF\/By
| + \dFt/dy

|
< 1 hold for all points in the neighborhood of

(*o> yo)- In order for the convergence to be rapid enough to make the

method advisable in any given problem it is necessary that each of the

quantities \dFi/dx
] + |

dFi/dx
|

and
j

dF\/by | + \dFt/dy
|
be much less

than 1.

We are now able to see why the convergence was so slow in the

example which we attempted to work by the iteration process in Art.

64. For that example the values of the quantities named above are

dl'\ 3Ft— + — = 0.521 + 0.304 = 0.825,
dx dx

dF i d/'jl— + — I = 0.162+0 = 0.162.
dy

i
dy \

The first is much too large for rapid convergence.

EXAMPLES ON CHAPTER IX

1. Find graphically or otherwise the approximate value of a real

root of the equation

2x — logio * = 7.

2. Find the approximate value of a real root of

10
xsinh 15 = 0.

*
3. Compute to four decimal places by the regula falsi method the

root found approximately in Example 1 above.

4. Do the same for the root found approximately in Example 2.

5. Find to four decimal places by the Newton-Raphson method a

real root of

** + 4 sin * = 0.
i

6. Solve *= 0.21 sin (0.5+*) by the iteration process.
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,Cba? ^

1. Find to three decimal places the smallest positive root of

x' + 2x = 6.

A Find the smallest positive root of

x tan x = 1 .28.

9. Compute a root of

x 104 - 1 = 100(* - 1 ).

10.

* Find to five decimal places a root of

* logio x = — 0. 125.

11. Compute to eight decimal places a root of

sin x — 0 . 6 x cos x = 1

.

12. Find a root of

tan a: + tanh x = 0.

13. Find a real root of

ez + erix = 4.

14. Compute to six decimal places a root of

69 — 5 sinh0 = 0.

15. Find the smallest root of

X1 X* x* xi

1 — x + — 4- • • s* ()

(2!)* (3!)
s

(4!)
1

(5!)*

16. Find a real solution of

4.2*’ + 8. 8y* =1.42,

(* - 1.2)’+ (y
- 0.6)* = 1.

17. Find by the Newton-Raphson method a real solution of

**y* — 3** — 6y* + 8 = 0,

* 4 - 9y + 2 = 0.
‘

18. Find to five decimal places a solution of

sin * = y + 1.32,

cos y = * — 0.85.
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19. An approximate solution of the equations

*T - 5x*y* + 1510 = 0,

y* ~ 3

x

4

y - 105 = 0,

is * = 2, y = 3. Find this solution to four decimal places.

20. Find by iteration a solution of

* ~ log 10 h 1

,

z

y = 0.4 + s
s — 2**,

x v
z = 2 + — ,

20

approximate values being x=l, y = 2.2, z = 2.



CHAPTER X

GRAEFFE’S ROOT-SQUARING METHOD FOR
SOLVING ALGEBRAIC EQUATIONS

66. Introduction. The methods given in the preceding chapter are

applicable only for finding the real roots of numerical equations. It

is sometimes necessary to find also the complex roots of algebraic

equations. In studying the stability of airplanes, for example, it is

necessary to solve linear differential equations with constant coefficients.

The solution of such a differential equation is effected, as is well known,
by first solving an algebraic equation whose degree is equal to the

order of the given differential equation. The algebraic equations which

arise in stability theory are usually of the fourth, sixth, or eighth

degree. A pair of complex roots indicates an oscillation, the real part

of the root giving the damping factor and the imaginary part the period

of oscillation.

No short and simple method exists for finding the complex roots of

algebraic equations of high degree. Probably the root-squaring method
of Graeffe* is the best to use in most cases. This method gives all the

roots at once, both real and complex.

67. Principle of the Method. The underlying principle of Graeffe’s

method is this: The given equation is transformed into another whose

roots are high powers of those of the original equation. The rootsj>f

th^tr^sformed equation are widely separated, and because of this fact

are easily found. For example, if two of the roots of the original equation

are 3 and 2, the corresponding roots of the transformed equation are

3m and 2m f where m is the power to which the roots of the given equation

have been raised. Thus, if m = 64, we have 3M = 1030,5M , 2M = 10l9*26fl
.

The two roots of the given equation were of the same order of magni-

tude, but in the transformed equation the larger root is more than a

hundred billion times as large as the smaller one. Stated otherwise,

the ratio of the roots in the given equation is f ,
but in the transformed

equation it is 1019M6/1030M6 = 1/1011 27
, or 2M/3#4 < 0.00000000001.

The smaller root in the transformed equation is therefore negligible

in comparison with the larger one. The roots of the transformed equa-

* AuflQsung der hdheren numerischen Gleichungen
,
Zurich (1837).

198
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tion are said to be separated when the ratio of any root to the next larger is

negligible in comparison with unify

68. The Root-Squaring Process. The transformed equation is ob-

tained by repeated application of a root squaring process. The fir^J;

application of this process transforms the given equation into another
whose roots are the square^ of those of the original equation. This
second equation is then transformed into a third equation whose roots

are the squares of those of the second, and therefore the fourth powers
of those of the original equation. The root-squaring process is continued

in this manner until the roots of the last transformed equation are

completely separated.

We shall now explain the root-squaring process and show the method
of applying it.

Let the given equation be

(68: 1) f{x) = a 0x
n + ai.r"' 1 + a 2x

n~ 2 + • • + a„_ t* + an = 0.

Then if X\
,
x2 ,

*
• xn be the roots of this equation we can write it in

the equivalent form

(68: 2) f(x) = a0(x - x x)(x - x2)(x - x2)
•

•

• (.r - xn) = 0.

Now let us multiply (68: 2) by the function

(68: 3) (- l)
n/(~ x) = (~ l)

n0o{- x - *i)(- x - x2)
*

1 (- x - xn)

= anix + xi)(x + x2)
• (x + xn ).

The result is

(68: 4) (- 1 )"/(“ x)fix) = ag(x 2 - *i
2
)(*

2 - xg) •
•

• ix2 - x*).

Let x2 = y. Then (68: 4) becomes

(68: 5) <f>iy) = ag(y — xf)(y - xg) • (y - xg) = 0.

The roots of this equation are xg
,
xg

,

• xg and are thus the squares

of the roots of the given equation (68: 1). Hence to form an equation

whose roots are the squares of those of /(*)= 0, we merely multiply^

fix) « 0 by (
-

1 )
n
/(- x)

.

T'his multiplication can be carried out in a simple routine manner,

as we shall now show. Let us first consider the sixth degree equation

f(x) = a0xe -j- aix* + o*xK + a 2x* + aa2 4- a*x + afl
= 0.

Then

(- l) 6/(- x )
- a 0x* - a\Xh -- a2x

4 - a 2x* + a,x2 - abx + at .

actual multiplication we find
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(68: 6) (- 1)•/(- *)/(*) - a$x» -a} *10 +02
* s8 — al

+ 20o0i — 2aiOi 20204

— 20i0|

+ 20Q06

x 4 — a}
— 2azah x2 + at

2 = 0 .

“|“ 2(1406

+ 20206

Let us consider next a seventh-degree equation,

f(x) = 0OX
7 + 0iX6 + 0 2X

6 + 03X 4 + 04*3 + 06*2 + fle* + 07 = 0.

Then

(
— l) 7

/( — *) = a <*x1 01*® + fl2^ 5 03*4 + 04^® — Q$X2 + 06* — 07 .

Multiplying these equations together in the ordinary manner, as

before, we find

(68: 7) (- D7(- *)/(*) = a0x" - a

?

z1* + ai xu - al

+ 20Q02 — 20103 + 20204

• + 20Q04 — 20106

+ 20Q06

+ 04
2 X* — 0 6

2 X4 + 06
2 X2 — 072 = 0.

— 20305 +2tf4?6 — 20607

+ 20206 — 20307

— 20107

A glance at equations (68: 6) and (68: 7) shows that the law of

formation of the coefficients in the squared equation is the same whether

the degree of the given equation be even or odd. In practice the multi-

plication is carried out with detached coefficients as indicated below

:

00 0i 02 03 04 06 • * '

00 -0i 02 -03 04 -05 * ‘ ‘

a$ -0? 02* -al 04* -06* * *

+20002 — 20108 + 20204 — 20306 + 20406 *

+ 20004 — 20105 + 20206 — 20307 * *

+ 20006 — 20107 +20208 *

+ 20008 — 20109 • •

+ 20o0io *
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The coefficients in the new equation are the sums b0 , bi, bit
• •

• bn of

the several columns in the scheme above. These coefficients can
evidently be written down according to the following rule:

1. The numbers in the top row are the squares of the coefficients directly

above them, with alternating signs—the second, fourth, sixth, etc. squared

numbers being negative .

2. The quantities directly under these squared numbers are the doubled

products of the coefficients equally removed from the one directly overhead,

the first being twice the product of the two coefficients adjacent to the one

overhead, the second the doubled product of the next two equally removed

coefficients ,
etc.

3. The signs of the doubled products are changed alternately in going

along the rows and also in going down the columns
,
the sign of the first

doubled product in each row not being changed .

We shall now apply Graeffe’s method to three Cases of algebraic

equations.

69. Case I. Roots all Real and Unequal. Since the relations between

the roots x\

,

z2 ,

• xn and coefficients a Q} a\, • • an of the general

equation of the nth degree

<j 0*
n + o ix

n~ l
-f + a n _ix + an = 0

are

a i = — (*l + X2 + • 1
* + *n)i

00

= + (XjX2 + * 1*3 +•'*)»
00

= — (X 1 JC2*3 + *1*2*4 * ' ’

00

= (- l)"*!*. • Xn ,

00

it follows that the roots xi
m

,
and coefficients bo, bi, b. of

the final transformed equation

4o(*m)" + 6i(*
m
)
B_I •

• + b„-ix
m + in - 0

are connected by the corresponding relations
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ii

bo

— (Xlm + X2m + + Z")

= “ — +— + • +—),
\ Xim Xim X\mJ

bi ( Xi
m

Xi
m

\— = XimXim + XimXzm + •• • = *i
m*2"( 1 H 1 ( •

• I.

bo \ xr xt
m /

bo ( xr \= — (Xi
mXomX»m + XimXimX,m+ •••) = — Xi

m
Xi
mX»m

[ 1 H 1- • • • I)

bo \ xr /

A.
, .X— — (— i) **!-*»- • • •

bo

Now if the order of magnitude of the roots is

I *i I > I ** I > I
**

I

• • > I
*» I ,

it is evident that when the roots are sufficiently separated the ratios

xf/xr, xf/xf, etc. are negligible in rnmparisnn xyjth unity. Hence the

relations between roots and coefficients in the final transformed equa-

tion are

Ji

bo

bo bs
— xr, — = xrxr, — = — xrxrxr,

bo bo

— = (- \)
nxrxrxr xr.

bo

Dividing each of these equations after the first by the preceding equa-

tion, we obtain

bo bo bn— - — xr, — = - xr, -— = — x„m .

bi bo bn-i

Hence from these and the equation bi/bo» — xr, we get

(69: 1) boxr + b t = 0, b\xr + bo = 0, btxo
m + b» = 0, • • •

bn-ixr + On- “ 0.

The root-squaring process has thus broken up the original equation

into n simple equations from which the desired roots can be found with

ease.

The question naturally arises as to bow many root-squarings are

necessary to break up the original equation into linear fragments. The
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answer is that the required number of squarings depends upon (1) the
ratios of the roots of the given equation and (2) the number of significant

figures desired in the computed roots. Since the required roots, and
therefore their ratios, are not known in advance, it is not possible to

determine beforehand just how many times the root-squaring process

must be repeated. This, however, is a matter of no importance, for

in practice we continue the root-squaring process until the doubled products

in the second row have no effect on the coefficients of the next transformed

equation .

Since the coefficients in the given equation are not in general all

positive, the signs of the doubled products will not occur in regular

order as in the literal equations which we used to illustrate the root-

squaring process. The possibilities of making a mistake in the signs of

these products are great, and therefore some scheme should be adopted

to prevent such mistakes. As a convenient notation for reminding us

at each step as to whether or not the sign is to be changed we shall

write a u
c
n after each term in which the sign is to be changed and an

“n” (for no change) after each term where the sign is not to be changed.

Furthermore, as the root-squaring process necessarily increases the

coefficients in the transformed equations until they become enormously

large numbers,we shall always write these coefficients as simple numbers

multiplied by powers of 10.

Finally, in the successive transformations of the equations by the root-

squaring process, we shall not write down the multiplier (
—

1 )
nf(—x)

as was done in the scheme on page 200, but simply apply the rule stated

on page 201. We shall now compute all the roots of an equation by

Graeffe’s method.

Example 1 . Find all the roots of the equation

1.23x6 - 2.52* 4 - 16. It8 + 17. 3*2 + 29. 4* - 1.34 = 0.

Solution. The preliminary work of separating the roots is given on

the following page and should be self-explanatory in view of what has

been said above. When doubled products are too small to be written

down, a star(*) is written instead.

It is evident that further squaring will simply give the squares of the

coefficients in the last line of the table, and we therefore stop with the

32d powers of the roots. Then by (69: 1) we have the following five

simple equations:

(7.541 X 10* W* - 2.346 X 102J - 0,

(- 2.346 X 1022)^” + 3.95 X 10s7 = 0,

(3.95 X 1087)*3
m - 8.744 X 10“ = 0,

(- 8.744 X 10“)*4
m + 2.148 X 1047 - 0,

(2.148 X 1047
)**

M - 1.175 X 10« = 0.



Given

equa.

1.23

-2.52

-16.1

17.3

29.4*

-

1.34
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Solving these by logarithms, we have

20+log 2.346— log 7.541
log r, 0.60915.

.Ti = 4.066.

In a similar manner we find

x2 = 2.991, ,r 3 = 1.959, ,r 4 = 1.0285, = 0.04447.

The signs of these roots are yet to be determined. To do this we
first apply Descartes’s rule of signs and find that there can not be more
than three positive roots nor more than two negative roots. Then we
substitute in the given equation the approximate values ±4, +3, ±2,
± 1 ,

+ 0.04 and see whether the positive or negative value comes nearer

to satisfying the equation. In this manner we find that the roots are

.v, = 4.066.

A'

2

= - 2.991,

.r* = 1-959,

.v 4
= - 1.0285,

,V6 = 0.0445.

The sum of these roots is 2.050, whereas it should be 2.52/1.23 = 2.049.

The agreement is therefore as close as could be expected.

All roots found by Graeffe’s method should be carefully checked by

some means or other.

*70. Case II. Complex Roots. When some of the roots of an algebraic

equation are complex, the equation can not be expressed as a product

of linear factors with real coefficients. Such an equation can, however,

always be expressed as a product of real linear and real quadratic

factors, each quadratic factor corresponding to a pair of complex roots.

The root-squaring process can therefore never break up such an equa-

tion into linear fragments as in the case when all the roots are real and

unequal.

When an equation has complex roots, the root-squaring process

always breaks it up into linear and quadratic fragments. The real

roots, if any, are found from the linear fragments as in Case I, while

the complex roots are found from the quadratic fragments.

In transforming an equation by the root-squaring process the presence

of complex roots is revealed in two ways: (1) the doubled products do
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not all disappear from the first row and (2) the signs of some of the

coefficients fluctuate as the transformations continue. The reason for

these peculiarities can be seen by considering a typical example.

70a). Detection ofComplex Roots. Let us consider an equation having

two distinct real roots and two pairs of complex roots. Let these roots be

*i, fie"1
, nc-"1

, *3 ,
r2e'

e
\ r2e~

a
*\ and let the order of their magnitude be

|
*i| > n > |

Xi
\
> rt.

Then the equation having these roots is

(70: 1) (x — xi)(x — r te
a‘)(x — rie~a‘)(x — xs)(x — rieu>)(x — r2c~“*) = 0.

The equation whose roots are the mth powers of the roots of this equa-

tion is therefore

(70: 2) (y — x2
m
)(y — r 1

m
e
im$

‘)(y
—

X (y — x3
m
)(y — r2

m
eim,‘)(y — r2

me~im>>) = 0,

where y=xm.

On performing the indicated multiplications in (70: 2), then taking

out the factors xrr1
m

, xfy*
m

. xfr?
mxt, xfrf m

xZ
n
rf', and neglecting the

ratios

rr Xs
m

Xi
m

Xi
m

r2
m

x3
n

since each of these is negligible in comparison with unity, we finally get

(70: 3) y* — xt
m
y
5 + IxCrr cosmtiiy4 — Ximritmy

l+ xFr^xFy*

— 2xCT?mxrT-r cos mB2y + xFrf'xf'r-?*' = 0.

The roots of the original equation have now been separated as much as

they can ever be (since in deriving (70: 3) we neglected such ratios as

Ti/x\ etc.), and the given equation has been broken up into the linear

and quadratic fragments

{yt _ xi
m
y

l = 0, — Xi
m
y
l + 2*i

m
rj
m cos mOi

y* — xi
m
ri
4my* = 0,

— + xi
m
ri

s
"*i

my* = 0,

xt
my* ~ 2*1^1

* cos m02y + xi
nr^mxt

mr2im - 0,

from which we can obtain the original roots with which we started.

Suppose, now, that we apply the root-squaring process to (70: 3)

once more, as shown below:
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y. y
* y

mth p. 1 ~Xim 2xim ri
m cos mBi

1 -Xi2"1

+ 4ximfi
m cos mdi

+ 4xi2m ri
2m cos2 mdi \

— 2xi 2mri 2m

-{‘2xi
m
ri
imXim

l

— X\lmrx
*n

-f4xi*
m
ri*
mxtm cos m$i

—Axi2nri2mximr2m cos m0%

+2xi"rl**xi'*rj
1'*

2mth p. — JCi
2m + 4xi,

’"ri
!" cos2 «®i — Xi2mrl

Am

/ y y

mth p. x\mri
imxim — 2 .ri

m
ri

2 ’nX8
,n r2

m cos m02

-\-x\ 2mriAmxi2m

—lxi2mri*mxtmri
m cos m82

-\-4xi
tmrj*mxtmr£m cos mdi

- 4.Ti
2 "1

ri
4"l*32mri*» cos2 m02

+ 2x\lmr\imxz2nri
lm

+xi2mfi4mxi2mra4w

2mth p. +xi*wri
4"lXi*

TO +xi
,mri

4mxfmrt*
m

It is readily seen on dividing the doubled products in each column by
the squared term at the top that all these products are negligible except

two in the first row. Hence the sums of the several columns are as given

above. This result shows why the doubled products in the first row do

not all disappear when complex roots are present.

Furthermore, since 2 cos 2 <}>—!= cos 2
<f>, we can write the coefficients of

y* and y in the forms 2x? mr? m cos 2m0i and — 2x? mr{ mx$ mrf m cos 2mdi,

respectively. Hence the coefficients in. the last transformed equation

are simply

(70: 5) 2mthp. 1 — Xiim + 2xi2mfi2m cos 2m$i — *i
2m

ri
4m + *i

,m
ri
4m

**
2m

— 2*i
2m

ri
4m

*j
2m

ri
2m cos 2mBt + xi

2",rl
4"Xj2mr2

4".

On comparing this last equation with the one for the mth powers of

the roots we see at once that each application of the root-squaring

process doubles the amplitudes of the complex roots. Hence the cosines

of these amplitudes must frequently change signs as the amplitudes are

continually doubled. This explains the fluctuation in the signs of some

of the coefficients when complex roots are present.

After the 'original equation has been broken up into linear and

quadratic fragments by the root-squaring process, we can find the
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complex roots by solving the resulting quadratic equations for xm and

then extracting the mth root of the results by means of De Moivre’s

theorem. But by proceeding in this manner we would have ambiguities

of sign in the computed roots, and such ambiguities are not easily

removed. To obtain the complex roots without ambiguity as to signs

we derive some further relations between roots and coefficients.

70b). Relations between the Coefficients of an Algebraic Equation and

the Reciprocals of Its Roots . In the general equation

flo*
n + aix n~ l + a2xn~2 + • •

• + on-\X + an = 0

let us put x = 1/y. The result, after clearing of fractions, is

any
n + fl»-iyn

“ 1 + an~2y
n~ 2 + • •

• + flay
8 + fl2y

2 + fliy + flo * 0.

Hence from the well-known relations between roots and coefficients

(p. 201) we have

An—

i

— = - (yi + yt H 1- y«),
an

Aw—

2

= yiyi + yiyt + • + yty» + •
•

,

a„

^ / 4\— = (- l)"yiy2 • •
y*\

An

or, since y = l/x,

(70: 6)

1

Xi X2

+ • • 1ii1+

1

H
*1*2

1 1
1 . 1

XiXi
r 1

*2*3

1 Go
= (- 1)»-

OnXIX2X9 • • • Xn

flfl-1

+
Xn-lXn

fln-2

On

These relations between the coefficients and reciprocals of the roots

will help us to avoid ambiguities of sign in the computation of complex

roots.

Example 2. Find all the roots of the equation

* x7 - 2x* - 3x* + 4** - 5x + 6 = 0.

Solution. The preliminary work of separating the roots is shown on

pages 210-211 and should be self-explanatory.
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It is evident from the last application of the root-squaring process

that another application would effect no further separation of the roots.

Hence we stop with the 256th powers of the roots.

The given equation has now been broken up into three linear and two

quadratic fragments. We first compute the real roots from the linear

fragments.

For the first real root we have by (69:1)

x,™ = 9.084 X 1074 ,

from which we find by logarithms

x, = 1.9625.

The second real root is found from

(_ 9.084 1074W 6‘ + 6.472 10 ,ss = 0.

Solving this by logarithms, we find

x2 = 1.5379.

The next two roots are complex, but the fifth, a real root, is found from

the equation

(3.879- 10m)-*j,M - 9.852-10190 = 0,

from which

Xt = 1 . 1080 .

To determine the signs of these roots we first apply Descartes’s rule

of signs to the original equation and find that there can not be more

than one negative root. The other two real roots must therefore be

positive. On substituting in the original equation the rough values

±2, we find that -2 nearly satisfies the equation. Hence *!- - 1 .9625 .

The three real roots are therefore

xi = - 1.9025, Xi = 1.5379, xt = 1,1080.

The modulus of the first pair of complex roots is found from the

quadratic equation

(1) (6.472- 10m)y* + (2.093- 10 1“)y + 3.879- 10,7» = 0,

where y=*“*. Let rx denote this modulus. We find n by means of a

simple theorem connecting the coefficients of a qua ratic equa ion

with the modulus of its complex roots.

Let the quadratic equation

(2) x'- + bx + c * 0,
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have the complex roots re** and re
-

**. Then

x* + bx + c m (x — re**)(x — re
-
**)

** - r(e*» + e~a) + r*

* — (2r cos 0)x + r*.

Hence c = rt ,
— 6 = 2r cos 0; that is, the absolute term in the quadratic

(2) is equal to the square of the modulus of its complex roots.

Let Ri denote the modulus of the complex roots of (1). Then on

dividing the equation through by 6.472 X 10m and applying the theorem

just stated, we get
3.879 X 10*7

Since, however, Ri = rP*, we have

3.879 X 10s -

f 61*

6.472

Solving this by logarithms, we find

ri - 1.2909.

The modulus of the second pair of complex roots is found in like

manner from the quadratic

(- 9.852 X 10*»°)y : + (0.163 X 101M)y - 1.618 X 10lM * 0,

(3) or
0.163X10* 1.618X10*

„* y -|

9.852 9.852

Denoting this modulus by r* and that of (3) by 2?*, we have

Ri1 -
1.618 X 10*

9.852
> or ri611

from which
r* - 1.0618.

1.618 X 10*

9.852

Now let the two pairs of complex roots be denoted by

«i + wi, «i — ivi and «* + *»*, «* — iv*,

respectively. Then since the sum of the roots of the given equation is

0, we have

or
*i + ** + 2«i + Xt + 2#j * 0,

(4) «! + *,« -0.3417.
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We next, apply the theorem connecting the sum of the reciprocals

of the roots with the coefficients of the given equation, namely

1
,

1
l

1
•

1 1
•

1 1 5
1 1 ~r-r H — 4 1 — 4 =—

X\ X2 U\ T Wl U\ — IV\ Ui + iv2 U% — VOi 6

Rationalizing the denominators of the complex terms and putting

uf +vf +vf = r}
, we get

1
,

1 2«i 1 2m 5
1 1
—-4 1 =—

*i *2 r i* ,r6 r2* 6

Now substituting in this equation the numerical values

-- =-0.508386,

1 1 1— = 0.6502374, — = 0.902527, — = 0.60010, = 0.92875

and dividing through by 2, we obtain

(5) 0.6001«i + 0.92875 m-, = - 0.10552.

Solving (4) and (5) simultaneously, we find

m, = - 0.6445, m 2 = 0.3028.

t»i and Pj are found from the formulas Pi = vVi2— u^ = \/(ri4-«0(ri—

M

t)

and p* = y/ri — ui = \//
(r2+Ms)(r2 — wj) to be

*, = 1.1185, v2 = 1.018.

Hence the two pairs of complex roots are

- 0.6445 ± 1.118* and 0.3028 ± 1.018i.

We have thus obtained the complex roots without any ambiguity

of signs.

The computed roots in this example can be checked by substituting

the values of the real roots and moduli in the known relation

XiX2fi 2xtfi
2 = — 5/6,

or

log (xixtri
2 xtr?) = log 5/6.

These logarithms are found to be

0.77816 = 0.77815.

The agreement is thus as close as could be expected.
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Remark. If an equation contains more than two pairs of comply

roots the moduli of the roots can be found from the quadratic frag-

meats as in the example above. Then the real parts uu u2, u,,- •

.

can

be found by making further use of the relations connecting the roots

and the reciprocals of the roots with the coefficients of the original

equation.

In some equations of high degree it might be advantageous, after

finding the real roots, to depress the original equation by taking out

the real roots and leaving only the complex roots. This is conveniently

done by synthetic division. The relations between the roots and
coefficients of the depressed equation should then be used.

71. Case III. Roots Real and Numerically Equal. If two roots of an

equation are numerically equal, the root-squaring process can never

break up the equation into linear fragments. One of the doubled

products will always remain in the first row. This product will be just

half the squared term above it, as can be seen by considering an equation

of the third degree.

Let the roots of

(71: 1) xs + aix* + + 03 = 0

be *j, Xt, x2 . Then the equation whose roots are the mth powers of those

of (71: 1) is

{y — Xi
n
)(y — x-p)(y — xt

m
)
= 0, where y = xm ,

or

y
* — (*i

m+ */•+ Xi
m
)y

2+ (x 1
mx2

m
*f xi

n
xt
m+ x^xa

m
)y — xi

mxfx3
m = 0

,

or

(71:2) y*- *i«(l+—
\ Xi

m
Xi
m
/

(

Xt
m

Xi
m
\

1 H 1

) y
— xl

nxjnxi
m = 0.

*2" *r

/

Now let **=*j and let |*i
| > \x* |. Then for sufficiently large values

of f» the ratio xf/xt* is negligible in comparison with unity and (71:2)

redtices to

(71: 3) y* — xi
my* -f- Ixfx-Ty - xr^2" - 0.

The roots of the given equation have now been separated as much as

they can ever be, but we shall apply the root-squaring process to (71 : 3)

to see what happens. Using only the coefficients, we have
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mth p. 1 —X\m 2ximx%m —XimXi%m

1 -Xiim

+4jcimxjm
+4xiimxitm

— 2XiimX2*m
1H

2mth p. 1 — X\*n +2xiimxt*m — Xi*
mx%im

It will be noticed that the first doubled product is negligible in

comparison with the squared term above it, whereas the second is of

the same order of magnitude as the squared term above and just half as
large. Furthermore, in the equation for the 2m th powers of the roots
all the coefficients except one are the squares of those in the preceding
equation. This remaining one is only half the square of the correspond-
ing coefficient in the preceding equation. These peculiarities enable
us to detect equal real roots immediately. We shall now show how to

compute such roots.

Example 3. Solve the equation

5*s + 2*’ - 15* - 6 = 0.

Solution.

Given equa. 5
i

2 -15 -6

25 — 4

— 150n

-36

2d p. 25 -1.54-10* + 2.49*10* -36

6.25* 10* -2.3716- 10*

+ 1.2450*

+6.2001- 104

-1.1008c

-1.296-10*

4th p. 6.25- 10s — 1 . 1266* 104 +5.0993- 104 -1.296-10*

3.9062- 10* — 1 .269* 10 8

+0.637n

+2.600* 10*

-0.029c

-1.680-10*

8th p. 3 .906- 10* -0.632-10* +2. 571-10* — 1.680* 10*

1.526- 10 11 —3 .994* 10“

+2.008

+6.610- 10“
*

-2.822-10“

16th p. 1.526- 10 11 -1 986-10“ 6.610* 10 l# -2.822*10“

"he given equation has now been broken up into the simple frag-

ment (6.610 • 1

0

l8
)*»

u— 2.822 • 101*~ 0 and the quadratic fragment
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1.526 •
— 1-986 • 10 15

*i
w+6-610 • 10" * 0. Solving the simple frag.

ment by logarithms, we find

*, - 0.3999.

To find the roots of the quadratic fragment we write the equation

in the form

X,”
1.986 X 104

1.526
xt
“ +

6.61 X 10 T

1.526
0 .

Since the roots are known to be equal and since their product is equal
to the absolute term of the quadratic, we have

32
6.61 X 10 7

1.526

Solving by logarithms, we get

*, = 1.732.

We check this result by putting the sum of the roots equal to the
coefficient of Xiu with its sign changed. Since the roots are equal, we
have

2*i“
1.986 X 10 4

1526

from which

*i = 1.731.

We shall next determine the signs of these roots. By Descartes’s rule

there can not be more than one positive root nor more than two negative

roots. Hence we try ±0.4 and find that —0.4 satisfies the given equa-
tion. The other two roots are therefore ± 1.732.

Remarks. It would be an easy matter to find the peculiarities in the

transformed equation due to the presence of equal pairs of complex
roots or to pairs of complex roots having equal moduli and different

amplitudes, but as such roots rarely or never occur in practical problems
we shall not consider them.

There are methods for improving the values of the real and imaginary

parts of complex roots found by the root-squaring process, but these

methods are rather long and laborious to apply. For information con-

cerning these methods the reader is referred to Runge and Konig’s

Numerisches Rechnen, p. 173; Bairstow’s Applied Aerodynamics, p.

558; and Carvallo’s Resolution Numerique des Equations, p. 20. Suf-

ficiently accurate values of the roots can usually be obtained by using
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Barlow’s Tables of squares, cubes, etc. and Crelle’s Multiplication

Tables, or else by means of a computing machine.

The values of the real roots can be obtained more accurately by

applying the Newton-Raphson method to the values found by Graeffe's

method. .

Carvallo* has extended Graeffe’s method to the solution of trans-

cendental equations by expanding the equation into a Taylor series,

neglecting the remainder term, and then treating the resulting poly-

nomial as an algebraic equation.

EXAMPLES ON CHAPTER X

Find to four significant figures all the roots of the following equations:

1. 7.5x* + 5.44** - 3.24*’ - 1.85* + 0.2 = 0.

2. 3.26** + 4.2*4 + 3.08** - 7.16*s + 1.92* - 7.76 = 0.

3. *• - 6** + 3*4 + 5*> - 6* + 2 = 0.

• Loc. cit., p. 24.



CHAPTER XI

THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

THE METHOD OF SUCCESSIVE APPROXIMATIONS

72. Introduction. Certain types of differential equations are dealt

with in text books on calculus and differential equations, and methods

are developed for solving equations of the types treated. Comparatively

few differential equations, however, can be integrated in finite form.

But'just as there are methods for finding to any desired degree of ac-

curacy the roots of any algebraic or transcendental equation having

numerical coefficients, so likewise there are methods for finding to any

desired degree of accuracy the solution of a differential equation having

numerical coefficients and given initial conditions.

In the present and succeeding chapters will be set forth four general

methods for solving differential equations numerically. The first

method to be considered is usually called the method of successive

approximations, but is also known as the method of iteration and the

method of Picard.* The theoretical soundness of the method was

established by Picard as an existence theorem about the year 1890,

but the conditions under which the process is valid as used in this

chapter were first laid down by F. R. Moulton t in 1918. The methods

of applying it have been developed by many workers, beginning with

Euler and extending down to the present time. This method is ap-

plicable to any ordinary differential equation or to any system of

ordinary equations.

73. Principle of the Method. Any differential equation of the first

order involving the variables x and y can be written in the symbolic

form

(73:1)
ax

Let us attempt to solve this equation for y in terms of x, subject to

the condition mat y =yo when x=jc0 .

From (73 : 1) we have

dy « f(x, y)dx.

Hence

y = J*
/(*, y)dx + C= J {^jdx + C.

* Journal de Malhematiques, 4th series, Vol. VI (.1890) pp. 197*210.

f New Methods in Exterior Ballistics
,
Ch. V, Chicago, 1926.

218
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Since y is to have the value yo when x=xq, these last equations may be
written in the equivalent forms

*

(73:2) y-yo+ J f(x, y)dx = y, -f
f'

^'jdx.

Here the integral term on the right represents the increment in y
which must be added to yo to get the value of y corresponding to any
given value of x .

Confining our attention for the moment to the first form in (73: 2),

namely,

we observe that the problem is complicated by the presence of y under
the integration sign as well as outside. An equation of _ kind is

called an integral equation and can be solved by the method oi * essive

approximations if certain simple conditions (see Art. 78) are sat.siied

and if the necessary integrations can be performed at each step.

To find a solution of (73: 2) by the method of successive approxima-

tions it is readily seen that if the function is continuous and the interval

of integration x— x 0(=Ax) is small, the corresponding increment in y
is also small. Hence to get a first approximation for y we put y0 for y
in the integrand. Then

y
(l) = yo + I /(•*. yo)dx.

* *Q

The integrand is now a function of x alone and the integral can therefore

be found by a quadrature or computed by some approximation process.

Here the superscript (0 denotes the first approximation to the unknown

function y. Succeeding approximations will be denoted by y (2)
, y

(3)
-

v(n)

Having now a first approximation y
(l> for y, w* substitute it for y

in the integrand of (73: 2) and integrate again, thus obtaining a second

approximation

/*> = yo + f */(*. yw)tx-
J

*o

The process is repeated in this way as many times as may be necessary

or desirable, the nth approximation being given by tho e .uauon

y»> . y0 +] ff(x, yt-»)djr.
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A simple example will make the process clearer.

Example. Solve the differential equation

<ty
.— - * + y,

ax

with the initial conditions xo=*0, yo“ 1.

Solution. To get a first approximation we substitute y = 1 in the

right-hand member of the given equation, thus obtaining

y(I) * 1 -|-
|
dx *= 1 + I (x + 1)dx (- x + 1

.

'o 2

For second and third approximations we have

r * / x* \ x*
yW = 1+ J

^X +— + X+ ljdx = — + X* + X + 1 ,

C * / X* \ X4

y
(,) = 1+ J

^x +— + x* + x +
1^

dx = — + — + X* + X +1 .

3

We have thus found y as a power series in x. For x = 0.1 we have

0.0001 0.001

24
+ 0.01 + 0.1 + 1 = 1.1103.

This value of y is correct to four decimal places, as will be pointed

out later. For x« 0.2 the corresponding value of yin is 1.2427, whereas

the true value is known to be 1.2428. We could get a better value by

continuing the approximations to y M)
, yw , etc.; but it is better to move

up to the point x ~0.1 and start all over again.

The graphs of y (,)
, y

(,\ yw , and y = F(x) are shown in Fig. 9. It will

be seen that the approximating curves approach the curve y = F(x)

more closely with each successive approximation.

Taking x*0.1 and y» 1.1103 as initial values, we have

y(l ) 1.1103+ f (x + 1. 1103)dx
•' 0.1

**

Y+ 1.1103x + 0.9943.

Then for second and third approximations we get
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V

Fig. 9

For x = 0.2 we get v = 1.2428, which is correct to four decimal places.

We could now move up to the point x = 0.2 and start over again, u

since the computations are not carried out in this manner in *

when the given equation has numerical coefficients, we shall not continue

the computation by this method. , .

The purpose of this article is to give the student an idea of the

underlying principle of the method of successive approximatmns a

also to prepare him for a proof which is to come later. The practical
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A simple example will make the process clearer.

Example. Solve the differential equation

dy

dx
* + y,

with the initial conditions *o= 0, yo= 1.

Solution. To get a first approximation we substitute y = 1 in the

right-hand member of the given equation, thus obtaining

yd) . l + J
“ (j^jdx = 1 -I- J\x + l)dx = y + * + 1.

For second and third approximations we have

yW

yW

C * / x* \ x*

1 + J
yx +— + x + \jdx = — + *! + x + 1,

n x* \ x* x*

* +— +x*+*+l)rfx = — + ~ + *s +*+l.
6 / 24 3

We have thus found y as a power series in x. For x = 0.1 we have

y
0.0001

24

0.001
+ 0.01 + 0.1 + 1 = 1.1103.

This value of y is correct to four decimal places, as will be pointed

out later. For * = 0.2 the corresponding value of y
(t)

is 1.2427, whereas

the true value is known to be 1.2428. We could get a better value by

continuing the approximations to yw , yw , etc.; but it is better to move
up to the point * = 0. 1 and start all over again.

The graphs of y
(1)

, y
(I)

, y(>>
, and y= F(x) are shown in Fig. 9. It will

be seen that the approximating curves approach the curve y = F(x)

more closely with each successive approximation.

Taking *=0.1 and y = 1.1103 as initial values, we have

y<»>« 1.1103+ f *(*+ 1.1103)d*
" 0.1

**
= — + 1.1103* + 0.9943.

2

Then for second and third approximations we get
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y<»- 1.1103+ (* +y + 1.1103* + 0.9943^d*

X8

= — + 1.0552*2 + 0.9943a: + 1.0001.
6

y«> = 1.1103+ ^* + ^-+ 1.0552*J + 0.9943*+ 1.0001^ <**

X4

= — + 0.3517* 3 + 0. 9972s 2 + 1.0001* + 1.0000.
24

since the computations are not carried out in this manner in practice

when the given equation has numerical coefficients, we shall not continue

the computation by this method.

The purpose of this article is to give the student an idea of the

underlying principle of the method of successive approximations and

also to prepare him for a proof which is to come later*. The practical
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difficulties associated with the method as outlined above lie mostly in

the difficult and sometimes impossible integrations which would often

have to be performed many times over. For example, if we wished to

solve the equation dy/dx= (y—x)/(y+x) with the initial conditions

*o = 0,y0 = l, we should have

J

'* l - x r* / 2 \
dx =1+1 ( 1 ) dx

0 1 + x j „ \1 + * /

= 1 + 2 log (1 + x) - x,

yU' = 1 -f

= 1 +

1 + 2 log (1 + x) - x

/.I

fH
+ 2 log (1 + x) — x + x

2x

-dx

+ 2 log (1 + *)

and our troubles would continue to pile up as we continued the ap-

proximations. The difficulties would be far greater in other examples

which might come up for solution. Fortunately such difficulties and

indeed all direct integrations may be avoided by the methods to be

explained in the next two articles.

74. Starting the Solution. If we integrate the differential equation

(74: 1)

.

dy— = f(*> y)>
dx

we find y as a function of x, which may be written in the symbolic

form

(74:12) F(x) + C.

The graph of (74: 2) is a curve in the ry-plane
;
and since a smooth curve

is practically straight for a short distance from any point on it, we have

the approximate relation

where the value of the derivative is to be taken at the point (x, y).

(If the student is in doubt about the relation (74: 3), he should draw a

figure and verify it).

To find points on the graph of (74: 2) and therefore values of x and

y satisfying the differential equation (74: 1), we start with the initial

values x=xo, y—yo, and let x change by equal increments Ax — h. Then
the values of y corresponding to xi( = *o+A)i **( = *i+fc), x», etc. are

approximately
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yi = yo + Ay = y0 + h, y2 = yi + k,

y» = y* + h, etc.

By taking h small enough and proceeding in this way we could tabulate

the integral of (74: 1) as a set of corresponding values of x and y .

Such was the method of Euler, but it is either too slow (in case h is

small) or too inaccurate (in case h is not small) for practical use.

The method which is actually used for starting the numerical

integration of a differential equation can be explained best by means of

an example. Let us return to the simple equation

dy-=x + y }

dx

with the initial conditions s0 = 0, y0 = 1. The value of the derivative

at the point xQ = 0, y 0 = 1 is

Q- o+i -‘-

If we take h = 0.05, an approximate value for yi is

y i
(,) = yo + (-V-Wo 1 +0.05 = 1.05.

An approximate value for dy/dx at (*i, yi) is therefore

/dy\w
[—) = 0.05 + 1.05 = 1.10.

\dx/i

A better value for the increment in y is obtained by multiplying h

by the average dy/dx for the ends of the interval from x0 to x\ (this is

obvious if we think of dy/dx as the rate of change of y with respect to

x). Hence for the second approximation to yk we take

yi «) yo +

/M . /^y\

UA \dx/i
h = 1 +

1 + 1.10
X 0.05 = 1.0525.

Then a better value for dy/dx at (xi, yi) is

= 0.05 + 1.0525 = 1.1025.
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A third approximation to y\ is then

1 + 1 . 1025
y,(*> - 1 H X 0.05 = 1.05256.

2

Continuing the computation, we have

/dvV'»>

= 0.05 + 1.05256 = 1.10256,

1 + 1.10256
y.(4)= l -| X 0.05 = 1.05256.

2

Since this is the same as yi (,)
, we can get no further change in y by

continuing the approximations. We therefore take

yi = 1.0526 ,

=

1.1026.

As a first approximation for y* we have

yt
U) _ y, 4- ^ A = 1.0526 + 1.1026 X 0.05 = 1.1077.

\dx/

1

Hence

Then

1 + 1.1077 = 1.2077.

1.1026 + 1.2077
yt
w = 1.0526 + X 0.05 = 1.1104,

and

Hence

1 + 1.1104 = 1.2104.

1.1026+ 1.2104
y,<*> - 1.0526 + X 0.05 - 1.1104 ,

which is the same as y%w . We therefore take
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Collecting our results in tabular form, we have the following table:

X y dy/dx

0.00 1 .0000 1 .0000

0.05 1 .0526 1.1026

0.10 1.1104
|
1

1.2104

The process by which we obtained these results in the table is an

improvement over Euler’s method, but it, too, is too slow for com-
puting a large number of tabular values. It is also of limited accurate ,

for the values just found are wrong by one unit in the fourth decimal

place, and the inaccuracy can not be corrected by further approxima-

tions. At the beginning of the computation it is necessary to proceed

as above until two or three lines in the table have been computed, but

after that we use the more rapid and accurate methods developed in

the next article. Incidentally those methods will enable us to correct

the inaccuracies of the earlier computations.

75. Use of Approximating Polynomials. We found in Chapter II

that any continuous function can be approximated to any desired

degree of accuracy by a polynomial. The integrals of all ordinary

differential equations occurring in applied mathematics are con-

tinuous functions of the argument, at least over considerable in-

tervals, and the derivatives of these functions are also continuous

except for an occasional break. The functions and their derivatives

can therefore be approximated by polynomials over any intervals

where there are no discontinuities in the function or in those derivatives

which it is desired to approximate. We therefore assume the following

pol> nomial for dy/dx :

dy
(75: 1) — = y = a 0 + <Ji(* - xn) + a 2(x - xn)(x — x„_i)

dx

+ a3(x - .*„)(* - Xn-i)(x - .r„_2)

+ Oi(x - xn)(x - x„-i){x - *„_.)(* - X„-i)

+ <h(x - JT.)(* - - Xn-i)(x - *„_,)(* - Jn-O.

This is the form of polynomial that was assumed in Art. 16 when

deriving Newton’s formula (II), the only difference being that we are

now using y' instead of y. This form of polynomial is assumed because

in this chapter we always know the values of y' behind us and are

trying to find its value at the next point ahead. Newton’s formula (II)

for this case is therefore
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m(m + 1) ,
m(m + 1)(m + 2)

(75.2) y = y. + uAiy: + -A,y: + -

—

- A,y:

where

m(m + 1)(« + 2)(m + 3)+
m 4‘*

fay* AsW
s yi + Aiy» U +—-(«2 + «) + ——(«* + 3tt2 + 2w)

2 6

+—(m4 + 6m* + 1 1m‘ + 6m),
24

w = or x = xn hu.

Since the change in y for any interval is given by the formula

J

* xk+i/dy\ r xt-nU ix=
J..

* Jx
-

we can find by means of (75: 2) the change in y over any interval where

dy/dx is continuous. We therefore have for any interval **+i—**

Ay /
*«•» r A»y»

|^y» + A,y/ m + ~y(“* + “)

Aiv-' Aav/
+ (m* + 3ms + 2m) + —

—

(m4 + 6m* + 11m* + 6m)
|
dx.

6 24 >]

Since * =*«+ Am, we have d*=Mu. Substituting this value for dx above

and changing limits, we get

r AiVn A«yn
yn + Aiy,' m + ——(m* + m) +——(m*+ 3m*+ 2m)

ut L 2 6

>]d«,
A 4y«

+—(w4 + + ll*2 + 6«)
24

or

Aiy* / «* «2 \ A*y* / 1#
4

\
*' „ + A.*'—+

-f-(T +T )
+— (t+«*+«-)

+
A«y» /«* 3m4 11m*

24

/m* 3m4

(t
+t + 3m*

)]

«fc+l

Let us now compute the value of Ay for the intervals **+i—*»
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Xn—Xn-it *»-!— etc. by substituting in (75: 3) the proper limits for

u. For the interval xm+i—

x

n the limits for u are

tik+i « (xn+1-xn)/h=*h/h = 1, uk * (*»-*„)/A= 0.

On substituting these in (75: 3) and simplifying, we get

[

1 5 3 251 1
yi + JAor.' + ~A,y»' +j A,< +—

J
.

For the interval *«— *»_i the limits for u are

«*+i 0, uk
- 1

;

and therefore

4, - -
* [*' - - f44.v

-

Proceeding in the same way for the other intervals, we get formulas

for the changes in y in those intervals. The results for the several

intervals are:

(75:4) /" U = h £y„' + ~A

(75: 5) /I, = h [y„' - yA,y»'

(75: 6) till = h £y.' - yA.y/

(75: 7) /n_* = h £y»' . - yAiy„'

(75: 8) 7*1^ = h £y„' - yAiy,'

By adding (75:4) and (75: 5) and then (75: 5) and (75: 6) we get the

following additional formulas:

»+, r 1 1 232 I
(75: 9) iZi - h |2y„' + -yA,y„' + -A.y.' + —A#:

J

* h ^2y» + yCAjy,' + A»y.
/ + A4

y.')J,

5 3 ,
251 "I

+ T7A=^n + —A,y.' + —
A4y.'J,12 8

1 1 19 "|

• HA’y* ~ u*'
y: -

+ a4**' * a4*' + as
4*']’

23 # 3 19 "I

+ -4„. - T4.,. -

S3 , 5S
.

251 1
+ 75^. - a4-* +

approximately.
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(75: 10) /"-
2 = 2h[y' - A,y.' + -^A2y„' - y^A^'J

= 2h
1

~t

)’,! - A
, yi + —A*y»

J,

approximately.

Now a word as to the use of these formulas. (75: 4) is the formula

for integrating ahead
;
it is used for finding the approximate change in

y in the next interval ahead of us, thereby enabling us to find the

approximate value of y at the end of that interval. When a line in the

table of corresponding values of x and y has been finished, the first

entry in the next line is computed by (75: 4).

Formula (75: 5) is used for correcting and improving the approximate

values found by (75: 4). It is not used for starting a new line in the

table but for finishing the lines started by (75: 4).

Formulas (75# 6), (75: 7), (75: 8) are used for checking previously

computed results, such as the first two or three lines in a table when

these latter were computed by the method of Art. 74.

(75: 9) is another formula for integrating ahead, by taking two in-

tervals at a time. The increments computed from this formula are to

be added not to the last values found but to those next to the last.

(75 : 10) is a simple and accurate chedk formula for two consecutive

intervals. It takes account of third and fourth differences, but only

first and second differences appear in it.

Formulas (75: 4) and (75: 5) are the main tools with which we shall

work from now on in this chapter. It is needless to say that all these

formulas apply equally well when the variables are any quantities

whatever—time and acceleration, time and velocity, etc. Their use

will be illustrated by several examples.

Example. We return once more to the differential equation

dy *— = * + ?•
ax

In Art. 74 we computed the entries in the following table, except that

now we have added on the columns of differences.

X y y'

0.00 1.0000 1.0000

0.05 1 .0526 1.1026 +0.1026
0.10 1.1104 1.2104 +0.1078 +52
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Before proceeding further with the computation we had better check

the values already found. If xn denotes the third value of x in the table,

then the second and first values will be and *n-2 ,
respectively.

o 1 2

Fig. 10

(See Fig. 10.) To compute the increment in y for the first interval and

thereby find y\ we apply formula (75: 6), since it covers the interval

jcn-.i
— *n-2 . We therefore have

Ay = 0.05^1.2104 -y(0.1078) + ^(0.0052)J
= 0.05254.

yi = yo +• Ay = 1 .0525.

For the second interval we apply (75: 5). Then

Ay = 0.05^1.2104 - -^(0.1078) -
^(0.0052)J

= 0.05780.

The corrected values of y are therefore yi = 1.0525,

yt = 1.0525 + 0.0578 = 1.1103.

We now make a new table containing the corrected values for y, y',

and the first ard second differences of y\ \\ e also insert in this table a

column for Ay as a matter of convenience.

X y Ay y' A,y' A2
y' A,y'

0.00 1.000 1.000 I

0.05 1.0525 +0.0525 1 1025 +0.1025

0.10 1.1103 +0.0578 1.2103 +0.1078 +53

0.15 1.1736 +0.0633 1 .3236 +0.1133 +55 +2

0.20 1.2427 +0.0691 1.4427 +0.1191 +56 +1
1

The computation is continued by adding a new line to the above

table, the line for * = 0.15. The first step is to compute a new Ay by

means of formula (75: 4), using the data of the third line:

Ay = 0.05 ^1.2103 + +(0. 1078) + ^(0.0053)J
= 0.0633.

yi" = 1.1103 + 0.0633 « 1.1736.
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Then

(/)?* - 0.15 + 1.1736 - 1.3236.

The next step is to enter these values of y and y' in the fourth line

of the table and then compute the differences of y\ as shown in the

table. The entries in this line must now be checked and improved upon

if possible by means of formula (75 : 5). Thus,

Ay = 0.05 J^l.3236 - y(0.1133) -
-^(0.0055)J

* 0.0633.

Since this is the same value for y as previously found, there is no

possibility of improving upon the results in the fourth line and we
therefore take them to be correct to four decimal places.

The fifth line in the table is computed in exactly the same way and

is found to be correct at the first trial.

The fact that the correct values of y were found at the first trial in

lines four and five suggests that it may be expedient to double the

interval
-

of integration, in order to progress more rapidly. We therefore

take h *0.10 and make a new table with differences to correspond to

the longer interval.

X y Ay y' Aiy' A#' A«/ AO''

0.0 1.0000 1.0000

0.1 1.1103 +0.1103 1.2103 +0.2103

0.2 1.2427 0.1324 1.4427 +0.2324 +221
0.3 1.3995 0.1568 1.6995 +0.2568 +244 +23
0.3 1.3996 0.1569 1.6996 +0.2569 +245 +24 +i
0.4 1.5835 0.1839 1.9835 +0.2839 +270 +25 1

0.5 1.7973 0.2138 2.2973 +0.3138 299 +29 4

0.6 2.0441 0.2468 2.6441 +0.3468 330 +31 2

0.7 2.3274 0.2833 3.0274 +0.3833 365 +35 4

0.8 2.6510 0.3236 3.4510 0.4236 403 38 3

0.9 3.0191 0.3681 3.9191 0.4681 445 42 4

1.0 3.4364 0.4173 4.4364 0.5173 492 47 5

1.0 3.4365 0.4174 4.4365 0.5174 493 48 1

To start the line for x * 0.3, we first compute Ay by means of (75 : 4),

using the data in the line for x*0.2. We have

Ay * 0.1 [1.4427 + 0.1162 + 0.0092] - 0.1568.

Hence y?i« 1.2427+0.1568 -1.3995, and (y')?4 - 1.6995. We now
enter these values in the table and compute the differences for that line.
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Checking these values by means of (75: 5), we get

Ay = 0.1(1.6995 - 0.1284 - 0.0020 - 0.0001) = 0.1569.

Since this value of Ay is different from that previously found, we repeat

the line for * = 0.3 and write this value of Ay in the new line. The second
approximations for y0 * and (y')o.t are then

y™ = 1.2427 + 0.1569 = 1.3996,

(/)"i = 1-6996.

Entering these values in the new line, computing the corresponding

differences, and then applying formula (75: 5) to the data of this line,

we have

Ay = 0.1(1.6996 - 0.1284 - 0.0020 ^ 0.0002) = 0.1569.

Since this is the same value for Ay as previously found, we consider the

results in this second line for x = 0.3 to be correct.

The computations are continued up to x = l, as shown in the table.

It so happens that formula (75: 4) gives the correct result for every

line except the last. Fourth differencies are used in formula (75: 4),

but never in (75: 5). The coefficient 251/720 in (75: 4) may be taken

as } to simplify the computations.

The exact solution of the differential equation dy/dx = x+y, with the

initial conditions x0 = 0, y 0 = 1 ,
is

y = 2ex - x - 1

.

By means of this equation we can compute the exact value of y cor-

responding to any value of x. The following table gives the correct

values of y for values of x differing by one tenth.

X y X y

0 1 0.6 2.0442

0.1 1.1103 2.3275

1.2428 0.8 2.6511wm 1.3997 3.0192

ffl 1.5836 1.0 3.4366

0.5
|

1.7974

It will be noticed that the values found by numerical integration

*re in error by one unit in the last decimal place, beginning with the

value for * = 0.2. The truth is that the source of these errors is in the

value 1.2427, which is in error by one unit in the last figure. This
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error was simply carried on by addition throughout the table. To
avoid such errors it is necessary to have the first two or three lines in

the table correct.

Note. There is another method for starting a new line in the table

.

without the use of formula (75: 4). It consists in assuming that the

third difference in the next line will be the same as in the line just

finished, and then working backwards by adding the new differences to

the values in the previous line. For example, suppose we take the line

for x = 0.8 and try to find the next line. We have

X y Ay / Ai/ a2/ As/

0.8 2.6510 0.3236 3.4510 0.4236 403
J

38

0.9 3.0191 0.3681 (3.9187) (0.4677) (441) (38)

0.9 3.0191 0.3681 3.9191 0.4681 445 42

The first step in this procedure was to assume that the third difference

in the line for * = 0.9 was 0.0038, the same value as given in the line

above. Then we added this 0.0038 to the second difference 0.0403 in

the line above. This gave us a second difference for the new line. We
added this 0.0441 to the first difference in the line above and obtained

a new first difference 0.4677. This was then added to the previous y' to

get the value 3.9187 for v' in the new line.

The next step is to apply formula (75: 5) to this new line, using the

Quantities enclosed in parentheses (these quantities are enclosed in

parentheses to indicate that they are trial or assumed values). We
thus get

Ay = 0.1(3.9187 - 0.2338 - 0.0034 - 0.0002) = 0.3681.

This value of Ay happens to be correct. We now add this to the previous

y to get the new value of y and thus complete the line. But now the

new y
9 must be computed by adding the value of x to this new y . We

therefore repeat the line for x = 0.9 and insert the correct values of all

the quantities. In some instances it would be necessary to correct this

second line.

The method just outlined in this note is not as much trouble to apply

as it may seem from the description above, but nevertheless it requires

more labor than the method of integrating ahead by (75: 4) and will

therefore not be used in this book.

76. Equations of the Second Order and Systems of Simultaneous

Equations. Any differential equation of the second or higher order

can be reduced to a system of first order equations by the introduction

of auxiliary variables. Thus, the second order equation
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(76: 1)

d2
y dy~+o^+by = 0

dx2 dx

can be reduced to two first order equations by putting y
f — dy/dx. The

resulting equations are

(76: 2)
dy*

dx
— ay' — by.

In like manner any equation of higher order or any system of equa-
tions of the second or higher order can be reduced to a system of

equations of the first order. A few examples will serve to illustrate the

method of procedure in such cases.

Example 1. A baseball is batted with an initial velocity of 150 feet

per second at an angle of 23° with the horizon. Assuming that the air

resistance is proportional to the first power of the velocity and that the

resistance coefficient (proportionality factor) is 0.02, find the range of

the ball and the time of flight.

Solution . The equations of motion under the conditions stated are

Putting

we have

d2x

It 2

d2
y

lit
2

dx
0 . 02— >

dt

dy
0 02- -

dx dx d*x
x = — > x — — =

dt dt aIt
1

dy
IISI*II
d1
y

* =
11 dP

l
x = - 0.02*,

(y = - 0.02;y - <?•

Since these two equations are entirely independent of each other,

the first not containing y or any of its derivatives and the second not

containing x or any of its derivatives, we shall integrate them separately,

taking the y-equation first. Taking g = 32.16 ft./ sec 2
,
the equations

with which we shall work are
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(1) $ = - 0.02y - 32.16;

/•»«+« T 1 5 3 1 1
(2) Ay = J y dt = At

^y + —A xy +—A*y +—A*j> +—

A

4

j>

J

,

for starting a new line;

(3) Ay =
f'

y dt = A/ — yA^! - —A*y - —-&iyj,

for finishing the new line, except for y;

(4) Ay - y <// = A/
jjy - yA,y - —Aty

- —ii,yj,

for finding y in the new line. Here the tH+i in (2) represents the same
instant as tn in (3) and (4).

The first step in starting the computation is to find the vertical

velocity and acceleration at the instant the ball leaves the bat. For

the velocity we have

y0 = 150 sin 23° = 58.61 ft. /sec.

Substituting this value of y in (1), we get for the initial acceleration

y0 = - 0.02 X 58.61 - 32.16 = - 33.33 ft. /sec*.

These values give the first line in the table.

To get the next line we assume that the acceleration will remain

practically constant for a short time, say § second. Then the decrease

in velocity during the first half a second is approximately

Ay * i(- 33.33) = - 16.66,

and the velocity of the ball at the end of this half second is therefore

about

yl/* = y« + Ay = 58.61 - 16.66 = 41.95 ft./sec.

Substituting this value of y in (1), we get a second approximation for

the acceleration at the end of the first half second, namely

Sul * ~ 0.02 X.41.95 - 32.16 = - 33.00 ft./sec*.

Then a better approximation for the change in velocity is obtained

by multiplying the time interval by the average of the acceleration at

the beginning and at the end of the interval. Thus,
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('

- 33.33 - 33.00'

)
16.58.

Hence y
(,)

i/* = 58.61 — 16.58 = 42.03. Substituting this in (1), we get
= —33.00, which is the same as y (2)

i/*.

'We have therefore finished the computation for the velocity and
acceleration at the end of the first half second. To find the increase

in y during the first interval we multiply the time by the average
velocity. Hence

1 (58.61 + 42.03)
Ay —

2 2
25.16 ft.

The second line in the table is now complete for y, y , y, and the first

differences are entered.

To start the third line we integrate ahead by (2) to find the ap-
proximate change in velocity in the next half second. The result is

Ay = — 16.42,

and therefore the velocity at the end of the second interval is about

y\i” = 42.03 - 16.42 - 25.61 ft. /sec.

Substituting this in (1), we find the acceleration at the end of the second

interval to be

y = - 32.67.

We now enter these values in the third line, form the differences, and
check the change in velocity by means of (3). The change checks up
to be the same as previously found and we therefore take the values of

velocity and acceleration to be correct. The corresponding increment

in y is computed by means of (4), as follows:

Ay «= 1(25.61 + 8.21 - 0.01) = 16.90.

Hence yi* 25.16+ 16.90 *42.06, and the third line is complete.

Since the computation is now well started, we can double the time

interval in this example without loss of accuracy. We therefore take

A*« 1 second and begin a new table, taking aS the first line the initial

values of y and y, and as the second line the values of these quantities

already found for / = 1. The first differences for the longer interval are

then entered in the second line. The third and succeeding lines are

computed exactly as the third line was computed in the short table at

the beginning.
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To find the time of flight, assuming the ground to be level, we find

the value of / for y = 0. Since the relation between y and t is not supposed
to be known, we assume that the part of the path through the points

where y has the values 51.45, 28.81, and -25.22 is the arc of a common
parabola and that y is therefore a quadratic function of t. Hence,
using the first three terms of the interpolation formula (16: 2), we have

A*) y 4

y = y* + A iy4 (t - 4) + —— (/ - 4)(/ - 3).
2

To find the differences to be used in this formula we construct the small

table

Ai.V A2y

51.45

28.81 - 22.64
- 25 22 - 54.03 - 31.39

Hence
31.39

y = - 25.22 - 54.03(7 - 4) — (/ - 4)(/'- 3).

Putting >' = 0 and simplifying the terms on the right, we get

15. 7/ 2 - 55.87 / = 2.5.

Solving this for we find / = 3.60 seconds as the time of flight.

The range is found by integrating the equation

(5) x = - 0.02*

from / = 0 to / = 3.60 seconds. The integration is carried out exactly

as in the case for y }
except that the value of x is not computed for the

separate intervals. The reason for not computing x as we go along is

(hat the values are not called for, only the range being desired. This is

readily found by integrating the velocity by means of Simpson’s rule.

The following table gives the results of the numerical integration of(5).

t

i

X A,* j AiJ ^2* AaX

0 138.08 -2.762
:

i

i 136.70 -1.38 -2.734 + 28

1 136.71 -1 37 -2.734 +28
1 135.35 -I .36 -2.707 +27 -1

0 138.08 -2.762
1 13S.35 -2.73 -2.707 +0.055
2 132.65 -2.70 -2.653 +0.054 -1

2 132.67 -2.68 -2.653 0.054 -1
3 130.04 -2.63 -2.601 0.052 _ 2 -i
4 127.46 -2.58 -2.549 0.052 0 +2
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To find the range we have

*&dt = $[138.08 + 4(135.35 + 130.04) + 2 X 132.67 + 127.46]

= 530.81 ft.,

by Simpson’s rule. But this result is too great, because the time of

flight is only 3.6 seconds. Since the. velocity decreased by 2.58 ft./sec.

from- / = 3 to 1 = 4, it is evident that it decreased about 2.58X0.6
= 1.55 ft./sec. from 1 = 3 to 1 = 3.6. Hence the velocity for / = 3.6 is

about 130.04— 1.55 = 128.49. The distance the ball would have

traveled from 1 = 3.6 to t = 4 is therefore about

128.49+ 127 .46
xQ.4 — 51.19 ft

Hence the range is about 530.81 — 51.19 = 479.6 ft. = 160 yards, say.

Remarks. The given differential equations in this example can be

integrated in analytical form. The results are

x = 6904(1 - e-° #2
‘),

y = 83325(1 - <r0M‘) - 1608 1.

By putting y = 0 in the second equation we find t = 3.60, as before. When
this value of t is substituted in the first equation we find x= 479.6 ft.

for the range. The values for y at the ends of the several time intervals

are found to be

yi = 42.00, y2 = 51.22, y, = 28.47, y4 = - 25.67.

The discrepancies between these values and the corresponding values

found by numerical integration are due quite as much to the inherent

inaccuracy of the analytical formula for y as to the method of numerical

integration. The inaccuracy of the formula for y lies in the fact that y

is equal to the difference of two quantities which are nearly equal

'’Art. 6).

If there had been no air resistance in this problem, the range of the

ball would have been 503.3 feet.

Example 2. When a pendulum swings in a resisting medium its

equation of motion is of the form

dV to
+ a— + b sin 0 = 0,

dt* dt

where a and b are constants. Assuming a = 0.2, 6= 10, tabulate the

integral of the above equation for a complete period (double swing),

taking as initial conditions 0=0.3 radian and d0/dt= 0 when 1=0.
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Solution. Putting

= — S -~- dt0

dt
’

~~dT~'dt
•’

we have the equations

dP — ~ 6 — — 0.20 — 10 sin 6.
I dt

Since the second equation involves the angle 6 directly, it is necessary

to compute this angle at every step throughout the computation.
Also, since 0 in this problem is always expressed in radians it is practi-

cally necessary to have at hand a table of circular functions in which
the argument is given in radians* instead of degrees, minutes, and
seconds.

The formulas used in the solution of this example are:

(1) 6 = - 0.020 - 10 sin 0,

given equation; '

/I 5 3 1 \
6dt = M (0„ + —Aif. + —AA + —A,0„ + —AA ),

from starting a new line;

(3) A0 = 6dt = A t^6» ——Ai0n ~ ~~AA ~ —A»0,,^, *or

checking and correcting the value of 0 found by (2);

(4) AO = f
"
6dt = At(K ~ ~ ~ t-AaY

J«._, \ 2 12 24 /

for finding 0 in the new line; where tn+i in (2) denotes the same instant

as tn in (3) and (4). After the computation is well started, these formulas

are applied in the following order: (2), (4), (1) ; (3), (4), (1) ; (3), (4), (1),

until the new line is finished.

The computation is started as follows: For the acceleration at the

start we have

0O — 10 sin 0.3 = — 2.955 rad. /sec. 1

We now have the values for the first line in the table. To start the next

line we assume that the initial acceleration will continue unchanged

* An excellent table of this kind is contained in Smithsonian Mathematical Tables.

Hyperbolic Functions. Washington, 1909.
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for 0.05 second. Then the change in velocity for this interval is about

A0 = 0.05(— 2.955) = - 0.1478 rad. /sec.

Hence the angular velocity at the end of 0.05 second is about

6i = — 0.1478 rad. /sec.

The decrease in the angle 6 is then

0o + 0i 0.1478
A0 X 0.05 = X 0.05 = - 0.0037 rad.

2 2

Hence the value of 6 at the end of the first time interval is

0, = 0.3 - 0.0037 = 0.2963 radian.

These values of 0i and 0i are now substituted in (1), and the cor-

responding value of 0i is found to be

0i = — 2.890 rad. /sec 2
.

A better value of A0 is now computed by taking the average of 0O

and Si, giving

2.955 + 2.890
A0 X 0.05 = - 0.1461.

2

The improved value of 0 is then —0.1461. As a second approximation

for AO we have
- 0.1461

A0 = X 0.05 = - 0.0037,
2

and therefore 0i = 0.2963. Substituting in (1) these improved values of

0 and 0, we find
0 = - 2.891.

The cycle of computations is repeated once more, with the final results

0 = 0.2963, 0 = - 0.1462, 0 =- 2.891.

This completes the second line in the table, except for the differences,

which are now entered.

Additional lines up to 1 = 0.20 are computed by means of formulas

(2), (4), (1), (3), etc. Since the correct value of 0 for the lines 1 = 0.15

and / = 0.20 is given by a single application of (2) alone, it seems ad-

visable to double the time interval before proceeding further with the

computation. We therefore take At = 0.1 second and start a new table.

Before proceeding with the new table, however, we should check the

values of Ad and AO in the short table already computed. We therefore

apply formulas (75; 8), (75: 7), (75: 6) and find that Ad in the first

interval should be —0.1464 instead of —0.1462. The short table is
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accordingly corrected from the second line onward, so as to get the

correct values of the quantities in the lines for < = 0.1 and < = 0.2. The
corrected table and not the original is given at the top of the main table.

The preliminary or trial lines are not given in the tabulated solution.

Usually the correct values for 0 and 0 were found at the first trial, but
the preliminary values of 6 had to be corrected in nearly all cases.

The student should notice that the time interval A< must be taken

small in this example, because all the dependent quantities are changing
rapidly. An interval longer than 0.1 second would be too inaccurate.

Fourth differences in the case of acceleration are used in (2) for

starting a new line, but in no other case.

The computation for the line i = 1.2 will now be given. Using the

data of the line for / = 1.1, we find A& by means of (2). Thus,

AO = 0.1(2.407 - 0.091 - 0.106 + 0.001 + 0.009) = 0.2310.

Adding this to the previous 6, we get 0.4948 for 6 in the new line.

We next compute A20 and A-J and then apply (4) to the data in the new
line. We therefore have

AO = 0.1(0.4948 - 0.1155 +(0.0025 + 0.0010) = 0.0383.

Adding this to the previous value of 6, we get —0.2195 for the new 0.

On substituting in (1) these values of 6 and 0 we find

0 = 2.078.

The values of Aid, A2d, A3 d are next computed, and then the completed

preliminary line is found to be

t 0 A0
. i

e Ai8 A*Q ' A#
j

0
|

M
|

A>0

1.2 -0.2195 0.2310 2.078 m
Formula (3) is now applied to this line to check the value of Aid

previously found by (2), giving

A6 = 0.1(2.078 + 0.210 + 0.020 - 0.001) = 0.2307.

A better value for 6 is then 6 = 0.2638+0.2307 =0.4945. The new
differences A2d and A.d are next computed, and then formula (4) is

applied again. The resulting AO is 0.0383, as previously found. These

corrected values of 0 and 0 are now substituted in (1), with the result

that 6— 2.078, as before. The corrected differences Aid, A2d, A»d will

therefore be the same as previously found, and consequently a new
application of (3) will give the same Ad as last found. The line for

t = 1.2 is therefore correct throughout.

The results in the table are shown graphically in Fig. 1 1

.
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Fig.

11
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Example 3. A bullet is fired at an angle of 38°30' with the horizon

and with an initial velocity of 780 feet per second. Assuming that the

air resistance varies as the square of the velocity of the bullet and that

the resistance coefficient is —0.00005, find the range, time of flight, and

angle of fall of the bullet.

Solution. Let 0 denote the angle which the velocity vector makes with

the horizontal at any instant. Then the equations of motion are

d2x
= — R cos 6 = — 0 . 00005*2 cos 0,

dt2

d2
y = — R sin d — g = — 0.00005*2 sin 0 — g,

where R(= 0.00005*2
) denotes the tangential retardation. Since

v cos 0=vx =dx/di and v sin 0=vv —dy/dt, the equations of motion

can be written in the form

d2x

Tt2

dx
0.00005*—
dt

>

d2y dy— = - 0.00005*— - g.
dt2 dt

These can be reduced to a system of first order equations by putting

dx dy dx d2x dy d2
y

dt ^ dt dt dt2 ^ dt dt2

Taking g = 32.16 ft./sec. 2
,
we then have the system

x = — 0.00005*#,

y,

y = — O.OOOOSvy — 32.16.

To start the numerical solution of this system of equations we first

find the initial values of the velocities and accelerations. Thus,

dx

Tt

dx

It

dy

Tt

dy

Tt
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»o = 780,

x0 = Pocos38°30' = 610.44,

y0 = »o sin 38°30' = 485.56,

x0 = - 0. 00005

D

0x0 = - 23.81,

yo = - 0.00005t'o>’o - 32.16 = - 51.10.

These quantities give the first line in the table to be computed.
To get the second line we assume rhat the initial accelerations will

remain practically constant for a quarter of a second. Hence

Ay = if- 51.10) = - 12.78,

Ax = if- 23.81) = - 5.95;

and therefore

yi/4 = yo + Ay = 485.56 - 12.78 = 472.78,

Xi/"= x'o + Ax = 610.44 - 5.95 = 604.49.

Since v = V"x5+

y

2
,
we have

#1)1 = V(604.49Tr+ (472. 78p = 767.42.

Then -

(2 )

yi/t = - 0.00005 X 767.42 X 472.78 - 32.16 = - 50.30,

xyi = - 0.00005 X 767.42 X 604.49 = - 23.20.

Better values for Ay and Ax are therefore

1 /- 51.10 - 50.30N
4, -tC 7 H 12 - 68

'

1 /- 23.81 - 23 . 20\

**-l{ 7 )-- 5 ' 88 -

yl/i = 485 . 56 - 12 . 68 = 472 . 88,

= 610.44 - 5.38 = 604.56,

tSl = >/(604.56)* + (472. 88)
2 = 767.54.

The third approximations for the accelerations at the end of the in

terval are then
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yul - - 50.31,

Xu\ - - 23.20.

This value of il/4 is the same as that previously found, and the value

of yi/4 differs so little from the previous value that we get the same Ay
as before. We therefore take these values to be correct for the present.

To find the value of y when t * we have

1 /485. 56 4- 472. 88\
Ay = — f -

J
= 119.80 ft.

yi/4 - 0 4- 119.80 = 119.80.

The values are now known for the second line in the table. To com-

pute additional lines we apply the following formulas in the order in

which they are written:

T 1 5 3 IT
( 1) Ay — J

ydt = £U
|^j>„

4- —Aiy„ 4- —

A

s j>,, 4" ~A»y» ***

for finding y in a new line;

(2) A*
r *•« r l 5 3 1 1

£dt - At \£n 4- —A,xB 4- —Aji„ 4- —A»x„ 4- —

A

4x»
\ 1 2 12 8 3 J

for finding £ in the new line;

(3) v ~\/** 4- y*;

(4) y = _ 0. 00005vy - 32.16;

(5) £ - - 0. 00005wc;

(6) Ay » J*
ydt - U £y„ - yAij*,. — ^A2y» - —A,3>„j,

for checking and correcting the value of y found by (1);

(7) A* - f
U
£dt = Al[xfl - 4A,f„ - - ^-Ajf.l,

Jt^, L 2 12 24 J

for checking and correcting the value of £ found by (2)

;

(8) Ay - ydi- AJ £y„ - yAiy„ - ^A,y„ - ^A,y. - ^A4y«],

for finding the new y after the correct value of y has been obtained.

In these formulas the instant /*+i in (1) and (2) is the same as U in

(6), (7), and (8).
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The increments in x for the several intervals can be found by means
of the formula

J

’ <b r i i i i
idt = At — —Ai*„ - —Atxn - —A 3xn - —Atxn

L 2 12 24 38

after the correct value of * has been found for the interval considered.

Since only the range is called for in this problem, however, it is not
necessary to find x at the end of each interval. The range is more easily

found by means of Simpson’s rule, as follows:

J

' T At
r

xdt = —[x0 -f 4(*j + x3 + • •
• + *„-i)

0 3

+ 2(Xi + X4 + • •
• + *n-2) + in],

where T denotes the time of flight.

The table is continued with the time interval At = \ sec. until five

lines have been computed. The computed values are then checked by
means of formulas (75: 6), .(75: 7), (75: 8). These formulas show that

the value of A t x for t = \ should be —5.87 instead of —'5.88. This

value of x is therefore corrected, as well as the succeeding values which

depend upon it.

Since the correct values are given at the first trial for < = J, /=f, and
/ = 1 , we start a new table with A t = \ sec., using the previously computed
values of x, y, x, y, and v for the lines 1 = 0, t = \, 1 = 1. Here, again,

the correct values of the several quantities are given at the first trial

in the fourth and fifth lines of the table. So we double the interval

again and start a new table with AI = 1 sec., using the previously com-

puted values for lines 1 = 0, 1 = 1, 1 = 2. This new table is continued up
to the line t

—
8. Then the interval is doubled once more and a new table

started. The computation is continued with this interval until the

problem is finished. In most cases only one correction is necessary for

i, y, and v, and none for y and x.

In finding v from the fomula v = VJ+j1
, the computation should

be carried through to six significant figures and then the result rounded

off to five* figures. Also, when using formulas (1), (2), (6), (7), (8), with

Al = 2 the student should not round off the numbers within the brackets

before multiplying through by the factor 2; for by so doing he would

double the error due to rounding. He should also be careful not to

discard fractional quantities of less than half a unit in the second

decimal place until he is sure that the algebraic sum of these quantities

is less than half a unit in the second decimal place. Attention to these

matters, instead of being a waste of time, will frequently save the time
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and labor of recomputing a whole line in the table. For example, let

us check the value of A

y

in the line for / = 26. We have

Ay = 2^— 376.89 + y(47.27) - ^(3.04) -
^(0.15)J

1 1
= - 753.78 + 47.27 (3.04) (0.15)

6 12

' = - 753.78 + 47.27 - 0.507 - 0.012 = - 707.03.

By rounding off before multiplying by 2 we have

Ay = 2[— 376.89 + 23.64 - 0.25 - 0.01] = - 707.02,

which differs from the previous value by a unit in the last figure.

The preceding remarks apply with even greater force when At = 4.

The final results of the computation for this problem are given

on the following page. The trial lines are not given, but the student

when working a problem should always retain the trial lines in the

computed schedule, so as to have a record of the computation at each

step.

To find the time of flight we replace the terminal part of the trajectory

by a parabola through the points corresponding to t = 22, f = 24, and

/ = 26. Hence y is to be a quadratic function of t, and we find this func-

tion by constructing a table of differences and employing Newton’s

interpolation formula (II) of Art. 16.

t y Aiy &ty

22 1389.97

24 780.54 -609.43
26 73.51 -707.03 -97.60

Putting y= 0 in that formula, we have

or

A-,yn

y» + Aiynu ——(«2 + «) =0.

73.51 - 707. 03« - 48.8(w2 + «) = 0,

48 . 8w* + 755 . 83« = 73.51.

- 755.83 ± 765.26 9.43

97^6 9776
0.0966,

and
/. t = tn + hit = 26 + 2 X 0.0966 = 26. 19 sec.
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We next compute the range by means of Simpson’s rule. The
horizontal distance covered during the first two seconds is, taking

A=Al= * sec.,

x = *[610.44 + 4(598.84 + 577.32) + 2 X 587.82 + 567.32]

= 1176.3 ft.

For the interval from 1 = 2 to 1 = 26, taking A = 2 , we have

* = | [567. 32 + 4(531.69 + 476.21 + 434.09 + 399.07

+ 366.90 + 335.36) + 2(501.77 + 453.93 + 416.00

+ 382.81 + 351.12) + 319.58] = 10181 ft.

Hence the horizontal distance covered in the first 26 seconds is 10181

+ 1176 = 11357 ft.

To find the distance covered in the remaining 0.19 second we assume

that the horizontal acceleration will remain at —7.90 for 0.19 sec.

Then the change in velocity during this time will be (
— 7.90) X 0.1

9

= —1.5. The horizontal velocity at the end of 26.19 seconds will there-

fore be 319.6— 1.5 or 318.1 ft./sec., and the average velocity during

this fraction of a second is (319.6+318. l)/2 = 318.8 ft./sec. Hence the

horizontal distance covered in the last 0.19sec., is 318.8X0.19 = 61 ft.

The total range is therefore

X = 11357 + 61 = 11418 ft .

If we compute the increments in x for the several time intervals and

add them as we go along, as was done in the case of y, we shall find the

same value for the range as found by Simpson’s rule.

If a denote the angle of fall, then

tan w = — •

*

We have already found the value of x for 1 = 26.19. To find y we assume

that the second difference in y will be the same for the interval 1*26

to 1= 28 as for the preceding interval. Then for the next two seconds

we shall have Aj 5> = 1.64. Hence for one second the change in will be

0.82, and for 0.19 second it will be 0.82X0.19 = 0.16. The vertical

acceleration when 1= 26.19 will therefore be —22.85+0.16= —22.69.

The change in the vertical velocity during the last 0.19 second is then

- 22.85 - 22.69

2
X 0.19 - 4.3.
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Hence y« -376.9-4.3- -381.2.

- 381.2
tan to * — 1 108

318.1
’

and <«>m —
The terminal velocity is

v = \/FT? = v/
(318.1) J + (381.2) 2 = 496.5 ft. /sec.

The actual shape of the trajectory is shown in Fig. 12.

Note. One of the most important applications of numerical integra-

tion as applied to differential equations is in the field of exterior

ballistics—the science which deals with the motion of a projectile

after it leaves the gun. The general problem of the flight of projectiles

at high velocities can not be treated here, because of the lack of the

necessary tables. The differential equations which hold for all velocities

are

£ = - Ei,

y = - Ey- g,

where

E
gwgoo

Here G(v) is a function of the velocity alone, H(y) is a function of

the altitude alone, and C is a constant whose value depends on the

weight and shape of the projectile. The function H(y) has the form
R(y) » 10~*», wliere k has the value 0.000045 when y is measured in
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meters. The formula for G(v) is much more complicated.* These

functions G(v) and H(y) have been tabulated for a wide range of values

of v and yf.

The application of numerical integration to exterior ballistics in this

country is due to Professor F. R. Moulton. The interested reader

should consult the following literature:

1. Exterior Ballistics, by Lieutenant E. E. Hermann, U.S.N.,

Annapolis, 1926.

2. The Method of Numerical Integration in Exterior Ballistics
, by

Dunham Jackson, Washington, 1919.

3. The article “Ballistics” (Exterior), by W. H. Tschappat, in the

Encyclopaedia Britannica, War Volumes (Vol. XXX), 1922.

4. New Methods in Exterior Ballistics, by F. R. Moultort, Chicago,

1926.

77. Halving the Interval for h. Sometimes it may be desirable to

decrease the interval h at some stage of a computation. Such a decrease

should be made if the higher differences of a function should become

large or if several trial computations should be required to obtain the

correct result. When decreasing the interval for h we should always

take it just half its previous value. It is very necessary that the values

of the functions to be computed should be accurately known for this

mid-value of h, for whatever errors are committed in making the change

of interval will be carried along throughout the remainder of the com-

putation.

The best method for halving the interval is to apply Bessel's formula

for interpolating to halves, namely:

(77: 1)
1 Ay_x+AVo 3 Ay_s+ AV_i
~8

2
+

128 2

where y'y, is the value of y' halfway between y'

o

and y\. Note that the

differences used in this formula are ordinary diagonal differences.

It may be necessary to find the values of y' at the mid-points of two

or three consecutive intervals. An example will make the matter clear.

* The formula for G{v) is

6(v) - 0.001140v ““ +
.......

\ 50 /
27226 + 4941

where tan”1 [(»—330)/50) is in minutes of arc and v is in meters per second.

t See Tables la and Ic in Exterior Ballistic Tables Based on Numerical Integration ,

Vol* I. Washington, 1924.
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Example. In Example 2 of Art. 76, find the value of 6 when / = 1.25.

Solution. We first compute the following table of differences.

t e A0 aV Ai0 A40

-2 1 0 0.0029

0.2009

-1 1.1 0.2638

0.2307

-302

-220
0 1.2 0.4945

0.1785

-522

-165
55

1 1.3 0.6730

0.1098

-687

-100
65

2 1.4 0.7828

0.0311

-787

3 1.5 0.8139

Substituting in the formula

So + 0i 1 A 2
0_, + A 20o 3 A 40_2 + A 4

0_i
01/2 ~

1
f282 128 2

we have

0i/2 - 0.58375 + 0.00755 + 0.0001 = 0.5914.

In a similar manner we could find the values of 0 and d for / = 1.25.

We could likewise find these quantities for t
= 1.35, 1.45, etc.

EXAMPLES ON CHAPTER XI

1.

Tabulate the solution of

y

from x— 1 to x = 2.5, given x 0 = 1, yo-3.
2. Tabulate the solution of

dy x— = logio
dx y

from x = 20 to x = 22.4, given jco = 20, yo = 5.

3. Solve numerically the equation

dy— = sin x — cos y,

dx

starting with * = 30°, y = 45°. Tabulate the solution to *= 75°.
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4. Tabulate the solution of

d*x— = logio sin X

from / = 0 to / = 4, given dx/dt** 2 and x = 30° when 1=0.

5. Solve the equations

dx dy--2* + y,

subject to the conditions x = 0, y — 0.5 when t = 0. Tabulate the solution

from t— 0 to 1= 5.

6. Solve

with the initial conditions *0 = 1, yo = 0. Tabulate the solution from

x = 1 to * = 3.

7. Solve

^._£ +4/ztt
dx 2y r 4y*

starting at *o=l, yo= 0.5. Tabulate the solution from * = 1 to * = 2.2.

8. Tabulate the solution of

d*9
1- 0.9 sin 0 — 0

dt*

from 1 = 0 to 1 = 1, given 6 = 5°, d6/dt=0 when 1 = 0.

9. Solve

<w de
+ 0.1— + sintf = 0

dt* dt

with the initial conditions 0 = 30°, dd/dt = 0 when / = 0. Tabulate the

solution from / = 0 to / = 1 .2.

10. Tabulate the solution of

d'r

~dt*

0.0002959

7'
+ 0.01

given r= l, dr/dt= 0 when / = 0. Take 1 = 0, 5, 10, etc. and compute

the values of r and dr/dt from / = 0 to / = 75.
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11. Tabulate the solution of the equations

d9x dx— - -r 0.000035*—,
dt9 dt

d9
y dy— = - 0.000035*— - 32.16,

dt9 dt

from / = 0 to 1 = 25, given * = 800, dx/dt = 692.8, dy/dt = 400 when / = 0.

Here

-VWW
12. Solve the equations

d9x 0 . 0002959*

~df

~
r*

d9
y 0.0002959?

~dt?

~
r*

from / = 0 to t = 10, taking t = 0, 1, 2, etc. and using the initial conditions

jc= 0.31
, y

—
0, dx/dt = 0, dy/dl = 0.034 when / = 0. Here r = \/**+>^ •

13.

In the differential equation

( 1 )

dy

dx

3(x9 - 14400)

2048000
3(x9 - 14400)1*

2048000 J

compute the value of dy/dx for x — 0, 5, 10, • • • 120. Then form a table

of differences and compute the successive increments in y by means of

formula (75:5). Starting with the values x = 0, y = 0, find the values of y
corresponding to the several values of x given above. Compare these

values of y with those computed from the equation

(2) y — (— - 14400

A

2048000 V 3 /

Note. Equation (1) in the above example is the differential equation

of the elastic curve of a simple beam loaded at the middle, when
(dy/dx) 9

is not neglected in the formula for the radius of curvature.

Equation (2) is the equation of the elastic curve of the same beam when
(dy/dx) 9

is neglected as is usually done in beam theory.



CHAPTER XII

CONVERGENCE AND ACCURACY OF THE
ITERATION PROCESS

78. Proof of the Convergence of the Iteration Process. Before

starting on this chapter the student should go back and read Art. 73.

We shall prove the convergence of the iteration process in the case of

a single equation in two variables and in the case of a pair of simul-

taneous equations in three variables.

78a). Equations in Two Variables. The solution of the differential

equation

dy— = /O, y),

with inital conditions x — xo, y—yo, satisfies the integral equation

78: 1) y = yo+ f fix, y)(ix.

The first approximation to the solution is

(78:2) y
(I) = y0 + f fix, y0)dx.

Subtracting (78: 2) from (78: 1), we have

(78:3) y-yW= f [f{x, y) - J(x, yo)]dx.

The quantity within the brackets is the change in f(x, y) due to a

change in y alone. Hence by the theorem of mean value we have

df(x, y)
fix, y) - fix, y0) = iy - y0)

—
, yo g g y.

dy

Then (78: 3) becomes

(78: 4) y- y
(1) = f (y - ya)-fj-dx.

J dv

Now let M denote the maximum absolute value of df/dy in the in-

terval x—xo and range y—yo, and let eo, «i, tt, • e» denote the maxi-

mum absolute values ofy—yo,y—yw , y—

y

(s)
,

• •
• y—

y

ln)
,
resp>ectively,

256
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in the interval x—xq. Then, considering only absolute values, (78:4) can
be written as

€i ^ €o-V/

J J
dx

J

=
j

x — *r 0 .

A similar relation holds for succeeding approximations, so that

S €,.»/! X - JToj
,

€3 g
j

a* — .v.j
! ,

€/i ~ €„_]*!/
;
X — A’o

I

.

Multiplying together all these inequalities, member for member, and
then dividing the result through by the common factors ci, e2 ,

• •
* c„_i,

we get

(78: 5) €* § M n x - a„
(

n
c 0 = (M

|

a* - j 0
\ J

n
«o.

Now if jil
j

a* — ,v 0
1

<1, it follows that (

M

]a;—

x

0 |)
n can be made as

nail as we please by taking n sufficiently large Hence e n ,
or |y — y

(7° |,

can be made as small as desired Since the difference |y — y
(n)

|

can be

made arbitrarily small, it follows that y
<n} approaches y as a limit for

all values of x in the interval (x, .r 0). The iteration process therefore

converges to the true solution when

I df 1

(78: 6) A— <1 or h < *

I dy <>f

dy

where h=x— Xq. This relation tells us that the larger the value of

df/dy the smaller we must take //, and that the iteration process fails

whend//dy= 00 .

Before beginning the solution of a problem the student should

examine the value of df/dy for all values of x and y in the proposed range

of integration and then plan his wrork accordingly. For example, the

method would fail on the equation dy/dx = \o%io{x/y) where y = 0.

78b). Simultaneous Equations. Let us next consider two simultaneous

equations of the first order:

(78: 7)

— =MP, ?» 0 .

at

da
-7 = MP > ?. 0,
at
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where p and g are functions of t. If the initial conditions are P~Po,
g=g0 when I «/0, then the first approximations are

(78: 8) = Po +
Jf

Mpo,qo,t)dt

and

(78:9) g
(1) -90 +

J
f .M^o, go, t)dt
f
*•

The true values of /> and g satisfy the integral equ

(78: 10) P = po + J
t

MP, q, Odt ,

I,

(78: 11) 9 = 9« + J

»

t

MP, q, t)dt

.

f.

Subtracting (78: 8) from (78: 10), and (78: 9) from (78: 11), we get

(78: 12) P - P«» - f [flip, q, t) - MP°, go, t)]dt,
J <•

(78: 13) g - g<» = f [Mp, g, t) - MP*, go, t)]dt.

Now applying to the differences within the brackets the theorem of

mean value for a function of two independent variables, we have

dji dji

MP> 9, <)
— MP*, go, t) = (p — />o)—— + (g — go)— *

dp dq

dli dji

MP, 9, 0 ~ MP*, 9o» 0 = (p — Po)— + (g — go)-—

»

dp dq

where

*/i d/i[^o + 0(P — P*), go -I- Kq — go), /] n ^ a ^ 4
' =

I U <s 9 N 1,

3* 3*

and 3/i/3g etc. have similar meanings. Replacing the bracketed

expressions in (78: 12) and (78: 13) by their values as given above, we

have

(78: 14) p — Pw = £(/> — Po)~ + (g ~
g°)-~-J

dt,
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dt.(78: IS)
ff - ,™ - f T(# - + (f - go)~\

dp dq J

Adding (78: 14) and (78:15), we get

(78: .6,

=/‘[>-*)(f +£)
+ <,_,,) (^ + $)]*•

Let M denote the maximum value of either

+
«/*

<>P

or
dq

+
3/s

d9

in the interval (/, i0) and ranges £-/><,, g-ffo. Then (78:16) becomes

(78: 17) p — p
(U + q — g

(I) S Af f [(£ - f>0) + (q — qo)]dt.

Furthermore, let to, «i and So, Si denote the maximum values of

\p—po\, \p—

£

(n
|
and |g

— go|, !g — g
(1)

|, respectively. Then (78:17)

may be written

«i + Si g A/(to + S o) f dt = A/C
J i.

Af(to + So) t — to

This relation holds for the first application of the iteration process.

Similar relations hold for the succeeding approximations, so that we
may write

t* + Ss ^ Af(t i + Si)
1

1 — /o
| i

«» + S» ^ Af(ts + is)
|
t — to

| ,

tn + S, g Af(«„_, + s„_i)
|
/ — <0

I
.

Multiplying together these » inequalities, member for member, and

dividing the result through by the common factors

(ti + Si), (to + S*)', • (e«_i + S„_i),

we get

(78: 18) e, + S. S (J/
1

f - So
|
)"(«o + So)

.

Now if Af |<-/o| <1, the right-hand side of (78:18) can be made as

small as we please. Hence («»+S.) can be made arbitrarily small; that
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is, the differences \p—

p

in)
|

and |g— g
(B)

|

can be made as small as we
like. The iteration process therefore converges to the true values of p
and q. The condition for the convergence is therefore

1

MAt <1 or At < — •

M

Stated otherwise, At must be such that

1 1

At < , or At <
dfi

\ +
dh 9Jx_

+
dp I dp dq dq

The iteration process will evidently fail wherever any one of the

partial derivatives dfi/dp, dfijdg, df2/dp , df2/dq becomes infinite.

For the proof of the iteration process for systems of equations in

any number of yariables the reader is referred to F. R. Moulton’s

New Methods in Exterior Ballistics
,
Ch. V.

79. Convergence in the Case of Substituted Polynomials. The proofs

given in the preceding article are based on the assumption that the

iteration process is carried out as indicated in Art. 73. In that case no

restrictions were placed on the form of the function y. In Arts. 75

and 76, however, the process was not carried out in this manner. In

these articles a polynomial of definite degree was substituted for the

derivative of the function, and this polynomial was then integrated over

an interval of width h. Consequently the function itself was replaced

in the given interval by a polynomial of a degree higher by one. Then
at each repetition of the iteration process by means of formula (75:5),

we always replaced the derivative by a polynomial of the same degree

as the one previously used, but having different coefficients. * This

amounted to replacing the unknown function by a polynomial of the

fifth degree when fourth differences were used, by a polynomial of the

fourth degree when third differences were used, etc. In particular,

the unknown function was replaced by a straight line in the first interval

and by a second-degree parabola in the second interval. This is why
the intervals must be taken short at the start of a computation.

Now when the derivatives are thus replaced by polynomials, the

iteration process converges rapidly to a definite limit, and the con-

ditions for convergence are the same as those found in Art. 78. The
limit

, however, to which the process converges is not the true value of

* Since the coefficients in the substituted polynomial are functions of the differences

Aty\ Asy\ etc., and since new differences are computed at each approximation, it is

evident that the new polynomial will have coefficients different from the preceding.
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the unknown function but is a definite polynomial of degree one higher
than that substituted for the derivative in the successive approxima-
tions. This limiting polynomial can be made to approximate the true
value of the function to any desired degree of accuracy in any one of
three ways: (1) by decreasing the interval h, (2) by increasing the degree
of the substituted polynomial, or (3) by decreasing h and increasing

the degree of the polynomial. Since the degree of the substituted poly-
nomial can be increased only by using higher differences and since it is

not desirable to use differences higher than the fourth, it is necessary
to decrease h in order to attain very high accuracy. If, for example,
fourth differences are not used in formula (75: 5), the value of h should
be such that the fourth difference term in that formula, when multiplied

by ft, will not affect the last decimal place retained. The foregoing

statements are illustrated in the following example.

The analytical solution of the differential equation

d v

(79: 1) — = x + y,
dx

wTith initial conditions * 0 = 0, yo = l
f
is

(79: 2) y - 2^ - .t - 1

.

By means of (79 : 2) the exact value of y can be found for any value of x.

The entries in the first table below are true values computed from

equations (79:2) and (79:1). The various orders of differences in

these lines are therefore correct values. We shall now attempt to find

the value of y corresponding to *=*1.0, by starting with the exact

values in the line for .t = 0.8. The value of h is therefore 0.2. Three

separate computations will be made: (a) by using only first and second

differences, (b) by utilizing third differences, and (c) by using fourth

differences. The lines for the successive approximations are shown in

each case. Also the absolute and percentage errors of the computed y

are given at the end of each computation.

The first preliminary line in each computation was found by in-

tegrating ahead by formula (75:4). The others were lound by suc-

cessive applications of formula (75 : 5).
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X y Ay / A»/ A,/ Aiy' A./

0.8 2.651082 3.451082 0.806844 0.146256

1.0 3.434171 0.783089 4.434171 0.983089 0.176245 *

(a) 1.0 3.436670 0.785588 4.436670 0.985588 0,. 178944

1.0 3.436878 0.785796 4.436878 0.985796 0.178952

1.0 3.436895 0.785813 4.436895 0.985813 0.178969

1.0 3.436897 0.785815 4.436897 0.985815 0.178971

*

Absolute error in y\.•<>0.000333; percentage error *0.0097%.

0.8 fgm
1.0 3.436159 4.436159 0.178233iHK

*

(b) 1.0 3.436569 4.436569 0.985487 0.178643HB! 5 !

!

1.0 mmrm||W 5 Jf 0.985518 0.178674HR ; ?
1

:

1.0 Hi QQgjlg mm
Absolute error in y\.o— 0.000038; percentage error* 0.0011%.

0.8 0.806844 0.146256Bff§ H 1 ^

|

1.0 3.436494 0.785412 4.436494 0.178568

3.436564 0.785482 4.436564gf 0.178638HR ; ! ; i

jj

3.436568 0.785486 4.436568 0.178642 jjji
;

" ?

: £
0.005874

1.0 3.436569 0.785487 4.436569mm BBSS 0.005875

Absolute error in yi.o—0.000005; percentage error “=0.000145%.

It will be observed that the iteration process converges to a different

value in each case, depending on whether we stop with second, third,

or fourth differences. It should also be noted that for this value of h

the error is about 67 times as great when we stop with second differences

as it is when fourth differences are used.

Even if we start with the correct values of all the quantities in the

row for *= 1.0 and attempt to check them by repeated applications of

formula (75:5), we shall find that the process, instead of checking the

true values as one might suppose, actually converges to the same value

for yi.o as was found by starting with the row for *= 0.8. The following

table shows the results of such a computation.

X y Ay y' Axy' Aty*

True f0.8 2.651082 3.451082 0.806844 0.146256

values ll.O 3.436564 0.785482 4.436564 0.985482 0.178638

1.0 3.436869 0.785787 4.436869 0.985787 0.178943

1.0 3.436895 0.785813 4.436895 0.985813 0.178969

1.0 3.436897 0.785815 4.436897 0.985815 0.178971
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It will be noticed that the last line in this table is the same as the last

line of the corresponding computation (a) in the preceding table.

Of course we can get a more accurate result when stopping with
second differences by using a smaller value for A. When only second
differences are used, the attainable degree of accuracy is the same as

that of Simpson’s rule for the same value of A. Hence by taking A
half as large, we reduce the inherent error to one sixteenth of its previous
value (Art. 49). Thus, if we take A = 0.1, start with the correct values

for the line x = 0.9, and compute the value of yi. 0f we shall find

yi .o = 3.43658S. The absolute error in this value is 0.000021, which is

about one sixteenth of the error 0.000333 made by taking A = 0.2.

80. Checks, Errors, and Accuracy. Attention has already been called

to the use of formulas (75:5), (75:6), (75:7), (75:8) for checking the

computed change in a function over a single interval. Simpson's rule

furnishes a convenient and reliable means of checking the summation
of any function over an even number of intervals: For example, the

decrease in the horizontal velocity of the bullet of Example 3, Art.

76, from / = 2 to t = 26, is

A/
Xdt = — [*2 + 4(X 4 + XS + Xi2 + Xie + £20 + x24)

2 3

+ 2(±6 + X10 + Xu + X18 + X22) + X2fl],

or

Ax = §[- 19.52 + 4(- 16.26 - 11.88 - 9.43 -r 8.27 - 7.91 - 7.88)

+ 2(— 13.77 - 10.46 - 8.72 - 8.02 - 7.88) - 7.90] = -247.76.

Hence

X28 = 567.32 - 247.76 = 319.56,

which differs from the value in the table by only two units in the last

digit. The fifth figure in all these numbers is uncertain, probably

worthless, but the two methods certainly check within a unit in the

fourth figure. The values of y and y may be checked in a similar manner.

A single error in any one of the quantities y, and y will persist

throughout the computation in the column in which it occurs, but its

effect will usually not increase as the computation continues. An error

in the acceleration will likewise persist and will affect in some degree

all the other computed quantities, but the effect may not be serious.

An error in the differences of the acceleration and in the second, third,

an«l fourth differences of the other functions will soon disappear, and

its effect on the final results will usually be negligible. If several error?
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are made, they will probably neutralize one another to a considerable

extent, but it is possible that they may accumulate sufficiently to

affect seriously some of the later results.

As an example of the effect of a single error near the beginning of a

computation, it may be stated that Example 2 of Art. 76 was first com-

puted throughout by starting with an error of twro units in the last

digit of 0 for / = 0.05 sec. The maximum error in any subsequent value

of 0 was five units in the last digit, whereas the greatest error in any

later value of 0 and 6 was only two units in the last figure.

An error of more than a unit in the last digit of a computed result

can usually be detected by inspection of the second, third, and fourth

differences of that result. If these higher differences run smoothly

—

that is, vary in a regular fashion without sudden changes in magnitude

or sign— ,
it is quite certain that no error has been made; but if the

third and fourth differences become grossly irregular, the student had

better stop and look for an error at once. The error may be located

approximately by the method explained in Art. 13. The computer

should watch the behavior of the higher differences as he goes along,

so as to detect an error as soon as possible after it appears.

The accuracy of the final results may be estimated in one or more

ways. The safest plan to insure accuracy is to take h so small that

fourth differences will be negligible to the number of figures desired in

the final results. When fourth differences are negligible, the applica-

tion of formula (75: 5) as many times as it will effect. improvement will

usually insure that the error is less than half a unit in the last figure

retained. Since these half-unit (or less) errors are as likely to be positive

as negative and since the coefficients in Simpson's rule are all positive,

it is evident that when these rounded numbers are summed by Simpson's

rule the errors in the last digits are largely neutralized in the sum-

mation process. Hence it is not w'orth while to consider them in

estimating the accuracy of a final result.

The computer should never forget that a result obtained by Simpson's

rule (or by any other formula for that matter) can not be more accurate

than the data to which it is applied. Hence if we compute the range of

a projectile, for instance, by applying Simpson’s rule to the column

of horizontal velocities, the computed range can not be true to any

more significant figures than are given in the velocity column. Oc-

casionally it may happen that the numbers to be summed are more

accurate than Simpson’s rule, in wdiieh case we should compute the

error due to the rule itself (Art. 48).

80a). Formulas for the Maximum Error. The error due to replacing

the derivative of the given function by a polynomial can be calculated

by integrating the remainder term in Newton’s formula (II), since
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formulas (75:4) and (75:5) were obtained from this formula. In Art.

28 we found this remainder to be either

An+l/("+l)(£)

(80: 1) Rn = — ~77'~u (u + 1)(« + 2)
•

• (u + n)
\n + 1 )!

or

(80: 2) R n — “
j

"~w(w + l)(w + 2)
• (u + w),

(n + 1)!
«

depending on whether we wish to use derivatives or differences.

Now if y—fix) denotes the solution of the given differential equation,

we recall that our approximation to this solution was obtained by re-

placing f'(x) by a polynomial. Hence the / in (80: 1) above must be

replaced by /' in our present problem. Likewise, the y„ in (80: 2) must

be replaced by y£

.

,
Furthermore, since we are integrating /'(*), we get the required

error by integrating Rn{x)dx . Since dx = hdu
,
we have from (80: 1),

on replacing/ by/', or/(n+l) by

/

(n+2\*

h nHf{n+Z. (£)
Rjx)dx = h I u(u + \)(u+2) • (u + n)du .

xn_ i
^-1 (»+!)!

Now since we usually stop with third differences in formula (75: 5),

we shall take n = 3 inuhe formula above. Also, let M n denote the maxi-

mum value of f
v (x) in the interval xn_i to xn . Then we have

n <
M n h

b

24
u(u + 1 )(u + 2){u + 3)du

M n h
b / 19 \ 19Afnhb

24 \ 30 /
"

720

or

(80: 3) F n <
MJt

38

practically.

If M denote the maximum value of /
v (x) in any interval (a, b), then

(80: 4) R\ g
nMh*
~
38

Or, since b—a = nh, this reduces to

Mh*
(80:5) £*< (b-a).

38

* Hcre/(*) stands for the solution of the given differential equation.
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Formulas (80:3), (80:4), (80 : 5) are theoretically correct, but they

are inconvenient to use in practice, because of the inconvenience of

obtaining the fourth derivative of /'(*)• We shall therefore derive

corresponding formulas in terms of differences.

Integrating (80: 2) over the interval x»_i to *», we have

£*-, = h
A<y'

4!
-«(« + 1)(« + 2)(« + 3)du =

AA 4/, / 19 \ 19M4y,

24 \ 30 / 720

or, practically,

(80:6) ^

A

4/„.

For an interval (a, b) we thus have

A _
(80:7) ES =

provided h has the same value in all the subintervals.

By bearing in mind the facts, principles, and formulas given in this

article the computer should have no difficulty in estimating the

reliability of his results.

EXAMPLES ON CHAPTER XH

1. Using formula (80:7), estimate the error the computed y’s

in the example of Art. 75 and compare these computed errors with the

actual errors.

2. Check the solutions of the examples in Art. 76 by Simpson’s

rule, Weddle’s rule, or central-difference formula (41:3).



CHAPTER XIII

OTHER METHODS FOR THE NUMERICAL SOLUTION OF
DIFFERENTIAL EQUATIONS

81. Introduction. Various methods have been devised for solving

differential equations numerically, but some of them are of limited

application. The method of successive approximations is doubtless

the best general method, but in some problems the desired result can

be obtained with less labor by some other method. In the present

chapter we shall describe and illustrate the use of three additional

methods which are of general application.

82. The Method of J. C. Adams. The method to be described in

(

this article was devised by J. C. Adams,* the famous mathematical

astronomer. Theoretically the method is applicable to equations of

any order or to any system of equations, but practically it is of limited

• application, as will appear later.

Adams’s method is somewhat similar to the method of successive

approximations, but it differs from the latter in two respects: (1)

the solution is started by computing the first four values of the function,

after the initial values, by means of Taylor’s series and (2) is continued

by integrating ahea«only—without repetitions.

To start a solution •we write the ordinary Taylor series

/"(so) /'"(*,0)

/(*) = /(*o) + f'(xo)(x - x0) H —(x - so)
2 H —0* - *o)

3 + * * •

JL j !

in the equivalent form

rt tn

(82 : 1) y - y0 + yo(* - x0) + y(* - *o)
s + ^-(* - *o)

s + • • •

<»)

Vo
+—(X - x0)

n + .

n\

Then to find yu yt , y», y« from this series we first calculate from the

given differential equation the values of the derivatives y', y" ,
y'", etc.

* Theories of CapiUary Action, by F. Eashforth and J. C. Adams. Cambridge,

(England), 1883.

267
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at the starting point x = *o, y—yo, and then put x—*o equal to h, 2h,

etc. in succession in formula (82:1). The method will be illustrated

by showing how to apply it to the examples already solved by the

iteration process.

Example 1. Start the solution of dy/dx =x+y by Adams’s method,

the initial values being *o = 0, >'o = 1 •

Solution. We have

/ = x + y-

Hence
y" = 1 4- y', y"' = y", y

iv = y"\ y
v = y

iv
, y

vi = y
v

.

Then
/ . t / _ /// _ i v _ v _ v

yo = 1, y0 = 2, yo = 2, y0 = 2, y0 = 2, ya =2.

Substituting these in (82:1) and remembering that x—x0 is simply x

(since x0= 0), we get

y =
jC

3 r 4 r6

1 + *+** + — + — + - +
3 12 60

If A = 0.f, so that *i=0.1, *2 = 0.2, etc., we have

(0. 1)» (0.1) 4

yi = 1 + 0.1 + (0. 1)
J
H 1 = 1.1103,

(0.2) 3
(0.2)

4

y2 = 1 + 0.2 + (0.2)* + 4 = 1^2428,

(0.3)* (0.3) 4 (0.3) 6

yt = 1 + 0.3 + (0.3)* + +— +

iA:

12 60

v (0.4)
3

(0.4)
4 (0.4)®

y* = 1 4-0.4 4-(0.4) 3 4-—— 4- - +
12 60

1.3997,

* 1.5836.

These values are all correct to four decimal places.

Since y'=x+y, the values of y/ f y2 ', etc. are found by adding the

corresponding values of x and y . The following table gives the results

of the computation for the first five values of y and y\

X y ?
—r—

4#' A«y'

ni 1.0000 1.0000 Mi mmBn ffl iBn 1.2428 1.4428 sn nm 1.3997 1.6997 0.2569 0.0022

0.4 1.5836 1.9836 0.2839 0.0026
i
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The table is continued by integrating ahead, using formula (75:4).

Adams’s method is evidently much shorter than the iteration method
in this example.

Example 2. Work Example 1 of Art. 76 by the method of Adams.

Solution . The equations to be integrated are

x = - 0.02x,

y = - 0.02? - 32.16,

with *0 = 0, ?o = 0, /0 = 0. Since / 0 = 0, the Taylor series for y is

yot 2
?o t

%
y

l

Jt A y[t h ?oV
y = Vo + yd H 1 1 1 1

2 3! 4! 5! 6!

Differentiating the equation ? = —0.02? — 32.16 with respect to /, we
have

? = — 0.02?, ?
5v = — 0.02v, ?

v = — 0.02? iv
, ?

vi = — 0.02?v .

Then since ?*= 150 sin 23° = 58.61, we get

y = - 0.02 X 58.61 - 32.16 = - 33.33,

y =^ 0 . 02 ( - .S3 . 33) = 0 . 6666,

y
w = - 0.02(0.6666) = - 0.0133.},

y
v = - 0.02(- 0.01333) = 0.0002666,

y
vi = - 0.02(0.0002666) = - 0.000005332.

Hence

33.33 0.667 0.0133
v = 58.61/ 1

2 + —t3 1'

2 6 24

0.0003 0.000005
_j

/s, /«.

120 t • 720
t

Putting 1 = 1, 2, 3, 4 in succession, we get

y, = 42.06, y2 = 51.44, y, = 28.80, yt
=- 25.22.

These values for yj, y2 , y,, y«, are the same as those previously found

by the method of successive approximations.

The time of flight of the ball in this problem is so short that the
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functions x and y can be represented*by Taylor’s series over the whole

trajectory, so that integration ahead is unnecessary.

To find the range we represent * by a Taylor series and substitute

in this series the value of t when y = 0. This value of t has already

been found to be 3.6 seconds.

Example 3. Start the solution of Example 2, Art. 76, by Adams’s

method.

Solution. Here the equation to be integrated is

0 = — 0.20 — 10 sin 0,

with 0=0.3 and 6 = 0 when 1 = 0.

The Taylor series for 6 is

Sot
1

'dot
3 dot4 0> M8

From {he given equation 8= —0.20—10 sin 0 we get

6 — — 0.28 — 100 cos 6,

0iv = - 0.20+ 1O(02 sin 0 - 8 cos 0), ,

0T = — Q.20iv + 1O[(0* - 0 ) cos 0 + 300 sip?],

0vl = — O.20v + 1O[(30S0 — 0iv) cos 6 — (6* — 00 ) sin 0

+ 3(0*0 cos 0 + 0* sin 0 + 00 sin 0) ]

.

For 0=0.3 and 0= 0 these equations become

0O = - 10 sin 0.3 = - 2.9552,

0o = - O.20o = 0.2 X 2.9552 = 0.59104,

00* = - O.20o - 1O0O cos 0.3 =j= - 0.118 + 28.232 = 28.114,

0o = - O.20o’ - lO0o cos 0.3 = - 5.6228 - 5.6464 = - 11.269,

0o* = — O.20o — 1000* cos 0.3 + 300* sin 0.3

= 2.25 - 268.58 + 77.43 = - 188.90.

The Taylor expansion for 0 at 1=0 is then
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(i) e = o.3
2.9552/* 0.59104/*

2
+

6

188.90/*

720

+
28.114/*

24

11.269/*

120

Differentiating this equation with respect to /, we have

,
. 0.59104/* 28.114/* 11.269/*

(2) 6 = - 2.9552/ + h
2 6 24

188.90/*

120

By means of equations (1) and (2) and the given differential equation

the correct values of 6, 6 and 6 can be computed for sufficiently small

values of /. Thus, for / =0.1, 0.2, 0.3, 0.4 the corresponding values of

6 are found from (1) to be 6i = 0.2854, 62 = 0.2435, 0* = O.1788,

0« = 0.0978; and from (2) the values of 0 are 0i = —0.2879, 0i = —0.5430,
0j= — 0.7411, 04 = —0.8631. Reference to page 242 will show that

these values, with the exception of 0«, agree closely with those found

by the iteration process. The value of 0« found above differs from that

on page 242 by five units in its last figure and is probably yicorrect

by that amount.

Series (1) and (2) are not very satisfactory for purposes of com-
putation, because they converge slowly even for small values of /.

Moreover, the coefficients are so irregular that it would be a difficult

matter to write down the general term. The interval of convergence

is therefore not easy to determine.

Example 4. Apply Adams’s method to Example 3 of Art. 76.

Solution. The equations to be integrated are

x = - 0.00005scV** + y*

,

y = - 0.00005y\/** + y*

,

with the initial conditions 2o = 0, y0 = 0, 2o = 780 cos 38°30',

yo = 780 sin 38°30'

when / = 0.

The Taylor expansion for x is

£o/* *o/* XoV *> *o'/*

*, + ±4 +— +— +— +— +— + t

and a similar series for y.
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From the equation £= — 0.00005* 2 we have

; - °-00005 [*V*+*’ + i(
)]

= -0.00005
(

xy2 + 2xx2 + *y;y\

We shall not continue the differentiations further, as the student can

see now that succeeding differentiations will become more and more

laborious. Because of these laborious differentiations and the further

labor involved in computing the numerical values of the complicated

expressions, we make no further attempt to start the solution of this

problem by Adams’s method.

If we attempt to apply this method to the fundamental ballistic

equations

x = — Ex,

y — — Ey — g,

where

„ G(v)H(y)

we get into far greater difficulties; for here £ is a function of / through

G(v) and this latter function is so complicated that the labor of finding

even a single derivative directly would be practically prohibitive. The

laborious direct differentiation can be avoided to some extent, however,

by finding the derivatives numerically (by interpolation) from a table

giving G(v) for various values of v*

Remarks on the method of Adams. The preceding examples serve to

show some of the advantages and disadvantages of Adams's method.

The success of the method in starting a solution evidently depends

upon (1) the ease with which the successive derivatives of the un-

known function can be calculated and (2) the rapidity with which the

Taylor series converges. If the successive derivatives are easily calcu-

lated and the Taylor series converges rapidly, the method furnishes the

best means of starting a solution and should be used in preference

to any other. But if, on the other hand, the successive derivatives

are not easily calculated, or if the Taylor series is such that the interval

ofconvergence is not easily determined, the method should not be used.

For continuing a computation after pnce started the method of Adams
is inferior to the method of successive approximations when differences

* See Vahlen, Ballistic (1922) pp. 57 and 28.



Art. 83] THE RUNGE-KUTTA METHOD 273

of the same order and the same value of A are used in both methods,

but for the same value of A the method of Adams (which consists merely

in integrating ahead) will give a more accurate result by using fourth

differences than will the method of successive approximations by using

only second differences. A combination of the two methods—that is,

starting the computation by Adams’s method and continuing it by

the iteration process—is frequently better than either alone.

Because of the difficulty of calculating the successive derivatives of

the air-resistance function the method of Adams is not suitable for

starting the computation of trajectories.

83. The Runge-Kutta Method. This method was devised by
Runge* about the year 1894 and extended by Kuttaf a few years later.

It is unlike either of the methods explained in the preceding pages.

Here the increments of the function (or functions) are calculated once

for all by means of a definite set of formulas. The calculations for the

first increment, for example, are exactly the same as for any other

increment.

Let dy
= /(*, y)

dx

denote any first order differential equation connecting the variables x and

y, and let A denote any increment Ax in the independent variable x.

Then if the initial values of the variables are xo and yo the first increment

in y is computed from the formulas

ki = f(xo, y 0)A,

( A ki\
h = /( x0+— » y0 + —

J
h,

{ h k 2 \
(83 : 1) £3 - /( x0+— > yo + ”

J
h,

ki = f(x0 + A, yo + kz)h
}

t

Ay = *(Ai + 2h + 2k 3 + * 4),

taken in the order given. Then

Xi = Xo + A, yi = y0 + Ay.

The increment in »y for the second interval is computed in a similar

manner by means of the formulas

* C. Runge, MathemaUsch Annalcn, Vol. 46 (1895).

t W. Kutta, Zeitschriftf&r Math, und Phys. Vol. 46 (1901

)
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*1 * /(*i, yi)K

kt = j(xI + —, yx + y^
h,

h = f(^x , + y> yi + y)*»

*4 = /(* i + h, yi + kz)h,

1

* Ay = —(*i 4- 2*, + 2*3 + *«) i

6

and so on for the succeeding intervals.

It will be noticed that the only change in the formulas for the

different intervals is in the values of x and y to be substituted. Thus,

to find Ay in the »th interval we should have to substitute xn~\, y«-i, in

the expressions for ki, k%, etc.

In the special case where dy/dx is a function of x alone the Runge-

Kutta method reduces to Simpson’s rule. For if dy/dx =f(x), then

= f(xo)h,

and therefore

*2 = j(xo + y)
h,

*.= /(*. + y)*,

*» = f(x0 + h)h\

Ay = y [/(,) + 2/(
*0 + y )

+ 2/( + J)
+ /(*• + *)]

(t)
= — [/(*o) + 4/ ^*0 + y^

+ /(xo + A)J ,

which is the same result as would be obtained by applying Simpson’s

rule to the interval from x<> to xo-\-h if we take two equal subintervals

of width h/2.

To integrate a pair of simultaneous first-order equations such as

dx
•— = M*, *> y),
at

Ml, x, y)
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where x and y are functions of /, we compute the increments in x and y
for the first interval by means of the formulas

(83 : 2)

= /i(<o, *o, yo)AZ,

, , / AZ Z,\
kt — fiylo + — > Xo + —i yo + — )AZ,

( AZ kt lt\— fi + — > Xq + —> y0 + —JAl,

k* = /i(/o + A/, Xo + kj, yo -f- Z3)AZ,

1

A*-—(*i + 2*,+ 2*,+ W.
6

(
h = /j(Zo, Xo, >'o)AZ,

u

f AZ

= /* + —

= h (z0

k\ lA
Xq + — 7 yo H J A/,

2 2 /

A/ £2 Z2\
+ —> Xq + — > yo + — lAZ,

2 2 " 2

f« = MZo + AZ, x0 f * 3 , y0 + Zj)AZ,

1

Ay = —(Zi + 2h + 2h + lt).
6

The increments for the succeeding intervals are computed in exactly

the same way except that Zo, *o, yo are replaced by Zi, xu ylt etc. as we
proceed.

The derivation of the formulas used in the Runge-Kutta method is

a somewhat lengthy process and will not be given here.*

The inherent error in the Runge-Kutta method is not easy to

estimate, but is of the order A6
t and is therefore of the same order as

that in Simpson’s rule.

We shall illustrate the method by applying it to some of the examples

to which the previous methods were applied.

Example 1. Solve the equation

dy— = x + y,
dx

with the initial conditions *o=0, ye*!.

* See Kutta, loc. tit., or Nutnerisches Rechnen, by C. Runge and H. Kdnig, pp. 287-

294 and 311-313.

t See Kutta, loc. cit., or Numerische Integration, by F. A. Willera, pp. 91-92.
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Solution

.

Taking h = 0. 1 ,
we have

*, = 0.1 XI = 0.1,

*2 = 0 . 1 [0 . 05 + 1.05] = 0.11,

*, = 0. 1 [0.05 + 1.055] = 0.1105,

*, - 0.1 [0.1 + 1.1105] = 0.12105.

.*. Ay = f[0.1 + 0.22 + 0.221 + 0.12105] = 0.11034.

Hence *i=*o+A = 0.1, yi=yo+Ay = l+0.1103 = 1.1103.

Then for the second interval we have

= 0. 1(0.1 + 1.1103) = 0.12103,

*2 = 0. 1(0.1 + 0.05 + 1.1103 + 0.06051) = 0.13208,

ka = 0. 1(0.1 + 0.05 + 1.1103 + 0.06604) = 0.13263,

k 4 = 0. 1(0.1 + 0.1 + 1.1103 + 0.13262) = 0.14429.

.-. Ay = |(0.12103 + 0.26416 + 0.26526 + 0.14429) = 0.13246,

and *2 = 0.2, y2 = 1.1103+0.1325 = 1.2428. These values for y, and ya

are correct to four decimal places. The computation can be continued

in this manner as far as desired.

Example 2. Solve Example 2 of Art. 76 by the Runge-Kutta method.

Solution. Here the equations to be integrated are

d6 X

-J),
d't

d6— = - 0. - 10 sin 0 = j 2(~, V, 0).
dt

Since / and 0 are both absent in the first equation and i is also absent

in the second, the equations for computing the k
y

s and l*s in this

example are as follows:

k\ = /i(0)A/ = 0At,

kt = ft (t+ y)
A/ = + y^

A/,

=
/» (^ + y)

A/ = (tf + y)
A/

,

^4 = /i(0 + h)& * {i + l»)At.
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J, = ft(p, i)At = — (0.20 -I- 10 sin 8)At,

+T d +
7)

A*

= ~ |_°-
2
(

d + y) + 10

/a = h(^e + —> 6 + y)
A*

= “ + y) + 10 Sin^0 + y ^ J
Al,

It = /*(» + k3 ,
6 + h)At = - [0.2(0 + h) + 10 sin (

6

+ *,)] A/.

Taking Af = 0.l and remembering that the initial values of 0 and 6

are 0o= O.3, 0o = O, we have for the first interval

k, = 0 , h = - 0.29552,

k2 = - (0.14776) X 0.1 = - 0.014776,

h = - 0. 1 [0 . 2
(— 0.14776) + 10 X 0.29552] = - 0.29256,

h = - 0.014628,

fs = - 0. 1 [0.2(— 0.14628) + 2.8729] = - 0.28436,

= - 0.028436,

U= - 0.l[0.2(— 0.28436) + 2.8154] = - 0.27585.

.-. A8 = i(0 - 0.029552 - 0.029256 - 0.028436) = - 0.014541.

/. 0j = 0.3 — 0.014541 = 0.2855,

and

Ai = J(- 0.29552 - 0.58512 - 0.56872 - 0.27585)

= - 0.2875.

- - 0.2875.

For the second interval we have
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ki » - 0.2875 X 0.1 - - 0.02875
>

J, » - 0.ll0.2(- 0.2875) + 2.8164J
- - 0.27589,

- 0.

1

[- 0.2875 - <7. 1379J = — 0. 04254,

li - - 0. 1 [0.2(— 0.4254) + 10(0.2678)] = - 0.2593,

*, « 0.1[- 0.2875 - 0.1296] = - 0.04171,

/, = - 0.1[0.2(— 0.2875 - 0.1296) + 10(0.2611)] = - 0.2528,

= 0.1 [- 0.2875 - 0.2528] = - 0.05403,

/« = - 0. 1 fo. 2(— 0.2875 - 0.2528 + 10(0.2414)] = - 0.2306.

/. Afl = J(- 0.02875 - 0.08508 - 0.08342 - 0.05403) = - 0.0419.

.'. tf, =0.2855 - 0.0419 = 0.2436;

and

A* = i(- 0.27589 - 0.5186 - 0.5056 - 0.2306) = - 0.2551,

6, = - 0.2875 - 0.2551 = - 0.5426.

These values of $i, 6t , tu are in close agreement with those found by

the method of successive approximations.

Since the computations for the succeeding intervals are carried out

in exactly the same manner as for the two intervals just computed,

we shall not continue the computations in this example.

Example 3. Solve Example 3 of Art. 76 by the Runge-Kutta method.

Solution

:

The differential equations to be integrated are

dx - 0. 00005w = - 0. 00005V** +1*
dt

= /i(“>*» y),

— - -0.00005®y- 32.16- - 0.00005y\/** + y* - 32.16
dt

-/»(->*. y)•

Since t is absent in these equations, the equations for computing the

k’s and /’s are
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j,
a fi(i, y)Ai m — 0.00005xV** + y* A/,

a _ 0.00005

(

i + 7)y
/

+ + (^ + t)

+ > + -y) A<

= - 0.00005 (* + 7) (* + 7) +( y + 7)

*« = />(* + *», y + *»)A<

= - o.oooos(* 4- kt)V(* + *»)*+ (y +

/j = /j(i, y)A/ = — (0. 00005jV*2 + x2 + 32.16)A/,

.
h = ;»(* + -j’

= — £o. 00005^ y + y)y (* + -y) + (y + 7)
+ 3216

]
A/ ’

/ &2 i*\

/. = /^* + — > y + -jj A<

- - [0.00005^ y + -y) /

V
/'( i + T)

+ (^ + ^)
+32,16

]
A<>

1* - M* + *»> y + /s)A*

* a - [0.00005(j? + l»)\A& + *8)*+ (y + <«)*+ 32.16]A7.

Ax = J(*i + 2*s + 2h + *0, Ay = K*i + 2/s + 2/, + /«).

By means of these formulas we can compute corresponding values of

t and t (or various values of I. Then since
J
and y are now’known for

equal intervals of I, we can find a and y by compubng the inmgmta

*. fsdt and y-fydl by Simpson’s rule. The numerical work will not

be carried out, as it consists merely in substituting the proper quantities

in the formulas just given.

Remarks an this method. The chief advantage of the Runge-Kutta

method is that the successive increments m the functions are computed

with a high degree of accuracy from a definite set of

set of formulas being used for computing all the increments. There are
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no trial values, no repetitions, and no expansions into series. The
greatest disadvantage of the method is that, unless the functions to be

integrated are very simple, the computation of the increments is apt

to be a tedious and sometimes laborious process. The actual amount*

of labor involved in computing an increment by this method is probably

greater than in the method of successive approximations. In some
problems, however, the Runge-Kutta method, as in the case of Adams's

method, may be used to advantage for starting a computation which

is to be 'continued by the method of successive approximations.

84. Milne’s Method. One of the latest and simplest methods for

solving differential equations numerically is that devised by W. E.

Milne.* We shall merely describe the method in its simplest form and

show how to apply it to a simple example.

Let

(84: 1)
j~ = y' = f(x, y)
ax

denote the differential equation to oe solved. The first tour values of

y and y
r
are found by any method which happens to be the most ap-

plicable—the method of Adams, the Runge-Kutta method, the method

of successive approximations, or some other method. The succeeding

values are found as follows:

1. Find a first approximation to the next y by means of the formula

(i) 4A
(84:2) yn = yn-i + — (2yn-i - yn-

2

+ 2yn- 3).

2. Substitute this y»
(l) in (84: 1) to find the corresponding value of

y» •

3. Substitute this y„ in the formula

(84: 3) yT = y»-* + —« + 4y*-i + y»-i) •

v

If yi (1) and yn a) agree to the desired number of significant figures,

we take yna) to be correct and then substitute it in (84: 1) to get the

correct yn'. We proceed then to the next interval and repeat the process.

If y* (1) and yn
li) as given by (84: 2) and (84: 3) do not agree very

well and no error can be found in the computations, then compute the

quantity

* “Numerical Integration of Ordinary Differential Equations. * The American

Mathematical Monthly, VoJ. 33 (1926), pp. 455-460.
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(84 : 4) E =
29

which is the error due to formula (84:3). If this quantity is large enough
to affect the last significant figure we desire to retain, then the only

thing to do is to decrease the size of h.

Formulas (84: 2) and (84: 3) are derived by integrating Newton’s

formula (I), expressed in terms of y'. The first is obtained by in-

tegrating over an interval of width 4h from to xn and the second

by integrating over an interval of width 2h, from xn-t to x„. Both
formulas give correct results when fourth differences of y' are negligible.

It will be noted that (84: 3) is nothing but Simpson’s rule applied to

the y'’s. (84: 2) is essentially a formula for integrating ahead.

These two formulas (84: 2) and (84: 3) can be applied to systems of

differential equations in exactly the same way as we applied formulas

(75: 4) and (75: 5) in Art. 76. We shall now apply them to a simple

differential equation of the first order.

Example. Solve by Milne’s method the differential equation

with initial values Xo = 0, yo— 1.

Solution. Since we have already solved this problem several times

in the preceding pages, we shall use the first four values of y and y' as

already found. Hence we write down the following table of given values.

X y y

0 l 1

0.1 1.1103 1.2103

0.2 1.2428 1.4428

0.3 1.3997 1.6997

To find a first approximation to y« we have by formula (84: 2)

= y0 +— [2(1.6997) - 1.4428 + 2(1.2103)]
3

0.4
- 1 + (4.3772) * 1 .5836.

3

Substituting this in the given equation, we get

yi = 0.4 + 1.5836 - 1.9836.
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Now substituting this and the two preceding y"s in (84: 3), we get

») 0 . 1 .

yi = ys +— [1.9836 + 4(1.6997) + 1.4428]
3 *

1
= 1.2428 + —(10.2252) = 1.5836,

30

which is the same as y4
(I)

. We therefore take this value of y« to be correct.

Suppose, now, we take A = 0.2. The first four values of y and y' in

this case have already been found to be as given in the table below.

X y /

0 l 1

0.2 1.2428 1.4428

0.4 1.5836 1.9836

0.6 2.0442 2.6442

To find yo.s we have

(i) 0.8.
yU = 1 +— [2(2.6442) - 1.9836 + 2(1.4428)

3

= 2.6508.

The corresponding value of y' o.a is therefore

y'o.$ = z+ y = 0.8 + 2.6508 = 3.4508.

Substituting this and the two preceding y
r
’s in (84: 3), we get

0 2
yo” = 1.5836 + —[3.4508 + 4(2.6442) + 1.9836] = 2.6510.

3

This value of yo.s does not quite agree with that found by formula

(84: 2), but the quantity £ = 0.0002/29=0.00001 does not affect the

fourth decimal place; so we take this value yo^ as correct. As a matter

of fact, the correct value of yo.« is 2.65108. The value 0.2 for h is slightly

too large for obtaining results accurate to four decimals.

85. A Final Remark. In this book four general methods for solving

differential equations numerically have been explained in some detail

and illustrated by several types of examples. The student has observed

that all four methods involve considerable labor. But the numerical

methods also have certain redeeming features in their favor; for they

t
provide a means of obtaining solutions to problems which could not be

solved otherwise, and they also give a complete record of the behavior
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of the functions within the regions considered. In some problems the
exact analytical solution may involve more labor than the numerical
method if certain information is desiicd. The following example will

illustrate this point.

Suppose the differential equation

dy y — x

dx y + x

is given, with initial conditions x0 = 0, yo = l, and it is required to find

several corresponding values of x and y. The given equation can be
solved by putting y=vx t separating the variables, and integrating. The
result, for the given initial conditions, is

— log (x
2 + y

2
) + tan-1 (

—

To find pairs of corresponding values of x and y from this equation

we could substitute the desired values of x and then solve the resulting

equation for y. But this resulting equation will always be a complicated

transcendental equation which can be solved only by trial—by Newton's
method or otherwise. The labor of solving this equation for even a

single value of y would probably be as great as that of computing several

tabular values by numerical integration. The numerical method might
therefore be the easier in this example.

The numerical solution of a differential equation, however, will give

no information concerning the function outside the range of computed
values, whereas the exact analytical solution will enable us to predict

the behavior of the function for any values whatever of the independent

variable. For this reason the solutions of differential equations express-

ing natural phenomena should always be obtained in analytical form

if possible.

EXAMPLES ON CHAPTER XIII

1. Solve Ex. 1 of Chapter XI by the method of Adams and also by

the method of Milne.

2. Solve Ex. 2, Ch. XI, by the Runge-Kutta method.

3. Solve Ex. 4, Ch. XI, by Adams's method.

4. Solve Ex. 6, Ch. XI, by the Runge-Kutta method and also by

Milne’s method.

5. Solve any of the remaining examples in Chapter XI by any of

the methods of the present chapter.



CHAPTER XIV

THE NORMAL LAW OF ERROR AND THE
PRINCIPLE OF LEAST SQUARES

86 . Errors of Observation and Measurement. All measurements

are subject to three kinds of errors : constant or systematic errors, mis-

takes, and accidental errors. Systematic errors are those which affect

all measurements alike. They are mostly due to imperfections in the

construction or adjustment of instruments, the “personal equation” of

the observer, etc. Such errors are usually determinate and may be

remedied by applying the proper corrections.

Mistakes or blunders are large errors due to careless reading of meas-

uring instruments or faulty recording of the readings. They consist

mostly in reading the wrong scale, reading a vernier backward, making
a miscount in observations which involve counting, putting down the

wrong number when recording the readings, etc. Mistakes do not follow

any law and can be avoided or remedied only by constant vigilance and
careful checking on the part of the observer.

Accidental errors are those whose causes are unknown and indetermi-

nate. They are usually small, and they Follow the laws of chance. The
mathematical theory of errors deals with accidental errors only.

87. The Law of Accidental Errors. In order to get a better under-

standing of the behavior of accidental errors the reader should try the

following experiment:

Take a sheet of ruled paper and draw with pen or pencil a line

bisecting the space between two rulings near the middle of the sheet, as

shown in Fig. 13. Lay the sheet flat on a table or floor, with the rulings

upward. Now take a sharp-pointed pencil, hold it lightly by the top

between the finger tips of both hands, and about two feet above the

paper. Take good aim at the line on the paper and try to hit it by
dropping the pencil on it. Drop the pencil in this way at least 100

times, making an honest effort to hit the line every time. The shots

will be self-recorded as dots on the paper. Count the dots in the com-
partment (space between the rulings) containing the target line, and
the number in each of the other compartments on each , side of the

central one. Plot a curve by using as abscissas the distances from the

target line to the mid-points of the several compartments containing

284
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dots, and as ordinates the number of dots in the corresponding com-
partments.

Fig. 13

An experiment of this kind gave the results recorded in the table

below. The corresponding Curve is shown in Fig. 14.

Compartment No. of dots

3 l

2 6

1 31

0 53

-1 32

-2 6

-3 t

Total 130

If the pencil had been dropped 10000 or more times instead of 130

and the width of the compartments correspondingly decreased, the

plotted points would have followed the curve shown in Fig. 14. This
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curve is known as the Normal Probability Curve. Its equation will be

derived in Art. 89.

AH kinds of accidental errors follow the same law as the pencil shots

in this experiment.

88. The Probability of Errors Lying between Given Limits. In

many applications of the theory of probability it is necessary to find the

chance that a given error will lie within certain specified limits . In such

cases ye utilize the fact that the probability that an error lies within given

limits is equal to the area under the probability curve between those limits.

The following proof, while not altogether rigorous, is sufficient to show

the truth of this statement.

Going back for a moment to the target experiment of Art. 87, we
recall that in plotting the results we erected ordinates at equal dis-

tances apart along the x-axis. The height of each ordinate was made
proportional to the number of dots falling within the corresponding in-

terval on the target. If we imagine rectangles constructed with the

equal intervals along the x-axis as bases and the corresponding ordi-

nates as altitudes (see Fig. 15), we readily see that the area of each

rectangle is proportional to the number of dots falling within the cqrre-

sponding compartment. Thus, if Nt is the number of dots in any com-
partment and Ai is the area of the corresponding rectangle, we have

(88: 1) Ai = k xN% .

Now if we make one more attempt to hit the target line in the ex-

periment of Art. 87, the chance of hitting within the central compart-
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ment is about 53/130, that of hitting within the next compartment to

the right is about 31/130, etc. The chance of hitting within some one

of these compartments is therefore

53 31 6 1 32 6 1

I30
+

130
+

130
+

lio
+

i30
+

i30
+

130

130

Tio

Since the chance of hitting within any compartment is proportional to

the number of hits made in a large number of shots, we have for any
compartment

(88 : 2) Pi - k*Ni,

where pi is the probability that a single additional shot will fall in any
compartment in which Ni shots fell in a previous experiment. Elimi-

nating Ni between equations (88: 1) and (88:2), we get

(88: 3)

which shows that the chance of making a hit in any compartment is

proportional to the area of the corresponding rectangle. The chance of

hitting within some compartment is therefore

(88:4) p - 1 * px + h + * T^ 1 + A * +-)- T £A
kl » kl

Now when the number of shots is increased indefinitely and the width

of^each compartment on the target is correspondingly decreased, it is

plain that the bases of the corresponding rectangles will likewise de-

crease and that the sum of the areas of these rectangles will approach

the area under the probability curve as a limit. The area under this

curve is always finite, and since it represents the probability that a

shot will fall somewhere
,
it (the area) represents certainty and therefore

may be taken as 1 ;
or lim^

A

= 1. Hence by (88:4) we have

1 = 4^(1), or k* = ku
*i

Equation (88 : 3) now becomes

(88: S) Pi - A {,

which shows that the chance of making a hit in any compartment is

equal to the area of the corresponding rectangle-
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From equation (88:5) we have the important result that the chance

of making an error whose magnitude lies between x and x+Ax is*

(88: 6) p — yAx,

where y is the ordinate to the probability curve. The chance of making
an error whose magnitude is between and *2 is therefore

» XmmX
i

(88: 7) p = lim yAx =
Ax—*0 x— Zj

89 . The Probability Equation. To derive the equation of the

Probability Curve we make use of the following facts as to the distri-

bution of accidental errors, as indicated by the table of Art. 87 and the

corresponding curve:

1. Small errors are more frequent than large ones, showing that the

probability of an error depends upon its size.

2. Positive and negative errors of the same size are about equal in

number, thus making the probability curve symmetrical about the

y-axis.

3. Very large accidental errors do not occur.

These three fundamental facts are so self-evident that they may be

taken as axioms.

From axioms 1 and 2 it is plain that the ordinate to the prob-

ability curve must be a function of the square of the abscissa, or

y = f(xi
).

Here the function /(**) is called the error function. Our problem now
is to determine the form of this function.

Referring once more to the target experiment, we can readily see that

if we had aimed at a particular point on the target line the distribution

of shots with respect to the line would not have been different from that

. found in this experiment. Suppose, then, that we try another experi-

ment of this kind and aim at some point 0 in the plane of the paper.

The shots will be distributed about 0 in such a manner that if we draw

any line through 0 the probability that any shot hits at a distance c

from this line will be

P * /(«*)*.

Let us therefore draw through 0 any two lines at right angles to

each other. We shall take these as axes of coordinates for two variables

* Except for differentials of higher order.
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jj and y. Let us consider any shot that falls at a point P(x, y). The
chance that P lies in a strip of width dx at distance * from the y-axis is

P * = f(.x*)dx

;

and the chance that P lies in a strip of width dy at a distance y from
the x-axis is

P» = f(y*)dy.

The chance that P lies in both of these strips and hence in the small
rectangle dxdy is therefore

(89: 1) p = p xpv = /(x*)/(y*)dxdy.

If we draw any other set of rectangular axes through 0, so that the

coordinates of P referred to these axes are x' and y', we evidently have

P = /(*'*)<**',

Pv' = Jiy'W.

Hence the chance that P lies in the rectangle dx'dy' is

(89: 2) p' = f(x
n
)f(y'*)dx'dy'.

But the chance that this particular shot falls within a small area A
is the same regardless of the orientation of the axes through O. Hence
if we take dx’ and dy

‘

such that

dx'dyf — dxdy * A,

wc H&vc

P = /(*WM = /(*'WSM,

or

(89:3) /(x*)/(y*) =/(x'W*).

Suppose now that the axes OX' and OY' are oriented so that OX'
passes through P. Then

x'-V^TT', y'-O.

Hence (89:3) becomes

(89: 4) /(**)/(y
J
) - /(x* + y*)/(0) = C/(x* + y*),

8ince/(0) is a constant.
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.

Equation (89:4) is a functional equation and can be solved by first

differentiating and then integrating.

Differentiating (89:4) partially with respect to x2 and y
2 in turn, we

have

/'(**)/(?)
^dfjx* + y

2
)

d(x2)

/'(y 2
)/(*

s
) = c

df(x2 + y

d{y*)

Now since d(u+v)/du=d(u+v)/dv, the right-hand members of these

equations are equal. Hence

or

/'(*’)/(/) = f'iy
2
)fix

2
),

/V) =M
fix') fiy

!
)

A, say.

Multiplying the equation fix 2
)/fix

2)=k through by d(x!
) and inte-

grating with respect to x we have

log fix
2
) = kx2 + logc,

or

(89: 5) fix
2
) = ce kx .

Now since. the probability of an error decreases as the size of the

error increases, it is plain that k must be negative. Putting k = — h 2
,

we have

(89: 6) fix
2
) *

Hence

(89: 7) y =

is the equation of the probability curve.

To determine the constant c we utilize the fact that the area under

the probability curve is equal to 1. Hence we have

(89: 8) cer
•’*'dx = — f e-^'dihx).

h J o

This integral must be evaluated by an indirect method. To effect

the evaluation let us consider the volume of the solid of revolution

(Fig. 16) included between the xy-plane and the surface generated by
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revolving the curve z= «~*‘ about the z-axis. Since this is a surface of
revolution, its equation is

(89:9) 2 = «-<**+,’>.

In cylindrical coordinates this equation becomes

(89: 10) z = e~’*

,

where x1 + y* = r2 .

"Taking as the element of volume a cylindrical shell of radius r, thick-

ness dr, and height z, we have

dV = 2vrdr-z « 2xre~r'dr

.

(89: 11) F = 2x r e~
rt
rdr * - r f e“f,(— 2rdr) * — 7r(e_r’l = t.

•f« •'o Jo

Using rectangular coordinates, we take as the element of volume a
prism of base dxdy and altitude z. Hence we have from (89:9)
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(89: 12) V * 4 J’
sdxdy *

4a: (-<**+v'^dxdy

er^dy.

Now since the value of a definite integral depends only on its limits

and not on the variable of integration, we may replace y by * in the

second integral. We then have

(89: 13) V

Since we have already found F«ir above, we have

(89: 14) or
V*
~
2

Substituting this in (89:8), we get c^h/y/x. Now putting this value

of c in (89:7), we have finally

(89: 15) y
V*

as the equation of the probability curve.

Equation (89:15) is of fundamental importance; for it is the founda-

tion of the Theory of Errors, the Principle of Least Squares, and the

Precision of Measurements. It is known as the Probability Equation,

Error Equation, etc. ; and its graph is known as the Normal Probability

Curve, the Error Curve, Gaussian Curve, etc.

It will be observed that this important equation contains only one

arbitrary constant. This constant h is called the “index of precision.”

To see the reason for this name we notice that the larger h is the higher

the probability curve will rise in the middle and the more rapidly it

will fall on each side of the “hump.” This fact, when considered in

connection with the target problem, means that a large percentage of

the shots hit Hear the target and very few hit far from it. In othpr

words, it means accurate shooting.

90. The Law of Error of a LinearFunction of Independent Quantities.

We shall next prove a fundamental theorem of great importance,

namely:

If Mi, M», • • • M% are independent observed quantities whose laws

of error are

y y
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then any linear function of these quantities obeys a similar law of error.

Proof: Let the linear function be

(90: 1) P = aiM\ + diM2 + • • + anMn ,

where a\, a*, a n are arbitrary constants. If x t ,
**,••• x„ denote

the errors of Mi, Mi, • •
• Mn , respectively, and £ denote the corre-

sponding error in F, we have

F + { = oi(Mi + *i) + oi(Mt + *2) + •
• + an(Mn + *»)

— a.\M\ + ai*i + a%Mi + d2x2 + • •
• + anMn 4* o„xn .

Subtracting (90:1),

(90: 2) £ = o tx, + osxi + •
• a„x„.

The error £ in F is thus a linear function of the errors in Mi, Mi, etc.

We are now to show that the law of error for £ is the same as the laws
for Xu Xi, etc.

To simplify the proof we first take a linear function of two indepen-

dent quantities,

F = diM

i

-f- 0-iMi.

Then

(90: 3) £ = ciiXi + flsx2 .

Hence

£ + A£ * ai(xi -f Axj) + ai(xi + A**).

An error of magnitude X\ to xi+Axj in Mi combined with an error of

magnitude x% to x2+Ax2 in Mi will therefore produce an error of magni-

tude £ to £+A£ in F.

The probability of the occurrence of an error lying between x t and

*i+A*i in Mi is

hi . . ,

Pi - —e~h ‘ 11 Axi,

V*
and similarly the chance of an error lying between x2 and xj+Ax* in

Mt is

P*

hi , •— e~k » *» Axj.
\Zir

The probability that these two independent errors will occur simul-

taneously and thereby cause an error lying between £ and £+A£ in F
is therefore the product of their separate probabilities, or

(90:4) P = Pipi =
1. «.

1 *1 *»
,
*«

,

A»iAX2-
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This is the probability that any single error in M\ combined with any

single error in Af* will produce a single error in F. But equation (90:3)

shows that an error in F may be produced by combining any yalue of

xt (that is, any error in Af») with all possible values of jci from — » to

«+ *>. Hence the total probability of an error between £ and £+A£ is

the sum of these mutually exclusive events, or

(90: 5). 0(£)A£ «* -Axt I e~k
‘*x ‘

,-k ‘*z *dx j,

ir

where 0(£) denotes the error function for £.

Let us now consider a single definite error £ in F. This means that

£ in (90:3) is to be considered constant for the time being. Hence from

(90:3) we have

£ - a rxi

Xi
at

Substituting this value of xt in (90:5), we get

(90: 6) 0(£)A£ = ^^-Axt f dx t .

IT J-K

To simplify the integration we write the exponent of t in the equivalent

form

h? hj £
2

fli* fit
1 + Af / atAi*£ V

~
a,1 A,* + «2*Ai* ^ \

1 ~
a,* A,* + afk?) '

This can be further simplified by putting Ci = a?hi +afh? . Then the

exponent of e becomes

Ai*W£* C7 a .hit y
C* a/\

1

C* /
’

and (90:6) becomes

*(£)A£
kiht

1C

h\h,

ir

Now put

AxtJ e
- «?*/.,*) <*,-•,

-Axt

J"
tf
-(c*/. 1*x*,-«,A,

,{/c,
)
,
(i3Cl

C / oiAj*£\

«A*
' ~ C! /

Then « (C/at)dxi, or => (a*/C)du, since £ is constant. Hence
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c£(£)A£ Axse~ e~u
2

du.

by Art. 89.

(90: 7) *(£)A£ = —

We have now taken account of the effect of the errors in Jlf| in

causing a particular error £ in F
t so that £ is now a function of x% alone.

Hence from (90:3), regarding x\ as a constant, we get A£ = a*iA:r2* Sub-
stituting^ for A£ in (90:7) and replacing C by its value

Va? hf +fl2
2 h?

,
we get

h\h»

(90: 8) *({) =
\'<ii

2 hi + a} hi
, , , , , , ,

-g' I^i C ®i Aj -t-a.

(90: 9)

where

//,

*«) =
\/jT

(90: 10) Hi =
+ a 2

J A
|

2

The law of error for £, the error in F, is thus of the same form as the laws

of error for xi and x2 ,
the errors in Mi and M2 .

From (90:10) we have

(90: 11)
1 ai hi + ai hi ai

2

t

ai

Wi hi hi Tf
+

hi'

To extend this relation to a linear function of any number of inde-

pendent quantities take
%

F =• OiM i -|- a 2M 2 -f- d}M 3 = (aiMi a 2Mi) + ajAfj.

If ht denote the precision index of the errors in M3 , andHt the precision

index for F, then by (90:11)

1 1 ai ai ai ai

2 Hi
~

~Hi
+

hi
~

hi
+

hi
+

hi

In the same way, we can extend the formula to a linear function of
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4, 5, or any number of quantities. We therefore arrive at the following

result:

If F be a linear function of n independent quantities which have been

determined by observation ,
the function Ffollows an error law which is of

the same form as the error laws of the independent unknowns. If the

function is

F — aiM\ a.iM

i

+ diMs • • +• anM
the itfdex of precision, H, of F is given by

Even when- F is not a linear function of the independent quantities

Mi, Mt, • • • Mn ,
the error £ in F will follow the Normal Law approxi-

mately if the errors xu **,••• xn are relatively small. For let

(90: 13) F = /(Mi, Mt,
• • • Mn)

represent any function of Mi, Mt, etc. Then errors in the M’s will

cause an error in F according to the relation

F + £ = /(Mi + Xi, Mt +*«, •• M» 4- Xn)

.

Expanding the right-hand member by Taylor’s theorem, as in Art. 5,

we have

(90: 14) F + £ = f(Mh Mi,--- M„) + -^-x, + ^-Xt + • •
• +

SM i dMi 3ATn

+ terms in xi*, xix2 ,
etc.

Now if Xi, Xi, etc. are so small that their squares, products, and higher

powers may be neglected, we have after subtracting (90:13) from

(90:14)

3F 3F 3F
(90: IS) £ = TT7"X J + TTTXi + ' '

' + T7^~Xn >dM i 3Mi 3M„

which is % linear function of xi, *j, etc. Hence by (90: 12) we have

(90: 16)
M }

where H denotes the index of precision for the errors £.

91. The Probability Integral and Its Evaluation. To find the proba-

bility that an error of a given series will lie between the limits xi and
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X2 we merely find the area under the probability curve from x=*xi to

x = X2 ,
as shown in Art. 88. This means that we must evaluate the

integral

(91:1) P =

The integral

i ,
n

e h x dx =
\/ TT

e~
hi
*'dx -

I = hl e-^dx

can not be evaluated in finite form, but we can expand the integrand
into a power series and then integrate as many terms as we need. Since

we have

Hence

y*- y* <y*n

= l + .v + - + — +••• + — + •

2! 3! n!

, t* t* t
8

= l -/4 + + .

2! 3! . 4!

e~‘*dt = t ]

n 3

f t*

+
3 5X2! 7X3! 9X4!

This series converges rapidly for small values of t, and the error com-
mitted by stopping at any term is less than the first term omitted

(Art. 10). For example, if / = J we have

l
1/2

e-^dt
1 1

,

1 1
,

1

2 24
+

320
~

5376
+

110592

0.5 - 0.04167 + 0.00313 - 0.00019 + 0.00001

0.46128.

This result is correct to the last figure, since the error is less than

(£)
u 1

-11 = 0.00000037.
11X5! 2703360

For large values of t the series (91:2) is not convenient for purposes

of computation, because too many terms are needed to give the desired

degree of accuracy. We shall therefore derive an expansion in descend-

ing powers of t, which may be used when t is large.

Since

f*e-‘'dt = jy^dl + J"er
rdt,

we have
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(91:3) fV'V/ = f e-'dt- f e~ l
'dt.

J o *^o "< ’

The value of the first integral on the right-hand side has already been

found to be V*/2. Hence (91:3) becomes

(91:4) f e~‘
,

dt =
J n

r>*.
1
o 2 J t

The remaining integral on the right-hand side can be written in the form

J

**
,

i r°° 1
,

1 f “
1

j

e-'dt I —e-' !

(- ltdi) -die- 1').

i 2 Jit 2 J t t

Integrating this last expression by parts, by putting u = \/t,dv = d (e
-<!

),

we get

1 e-‘‘ 1 rl
2= - — + — I ~e-‘\2tdt)It 4 J,

1 1 r-i
,= + — I

2 < 4 J, t
3

1 <r‘

T T-TEHn-M*
or

f- . 1
*-•* 1 e-‘* 3 r- «-•*

I = + — I dt.
J, 2 t 4 /» 4 J, /

4

By continuing this process of integrating by parts and substituting

limits, we get the following expansion

:

„ C
m

. e
-«*/ 1 1-3 1-3-5 \

J, 2/ \ 2t* (2t'
lY (2<

2)* /

Substituting this in (91:4), we get

1-3-5

(2/
2
)
*
+

} This series (91:6) is called an asymptotic series. It is divergent, but

: the terms within the parenthesis decrease in numerical value so long as

J, the number of terms does not exceed /*+l. This is the maximum num-

(91
V*

e~‘ dt =
o 2

-q.-i
21 \ 2

1

1-3

2/2
+

(2/
2)*
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ber of terms ever used in computations with this series. The error com-
mitted in using (91 :6) is less than the last term retained.*
As an example of the use of (91:6) we shall compute

= 0.8862 - 0.004579(1 - 0.125 + 0.046875 - 0.029297)

= 0.8862 - 0.0041 = 0.8821.

The error committed is less than

0.004579 X 0.029297 = 0.00013.

As a matter of fact, the number 0.8821 is correct to its last figure.

By means of formulas (91 : 2) and (91:6) one could compute a table

giving the value of the probability integral for any value of /. Such
tables were computed long ago, and a table of this kind is given at the

end of this book. This table gives the probability of an error lying

between —t and +/, where l = hx. Since the probability curve is sym-
metrical with respect to the y-axis, the chance that an error lies between
— t and -H is twice the chance that it lies between 0 and +/• Hence
the probability of such an error is

where t — hx. The use of the table will be explained in working the

examples in the next article.

92. The Probability of Hitting a Target. Suppose we take a rectangu-

lar target and draw through its geometric center two lines at right

angles to each other and parallel to the sides of the target, as indi-

cated in Fig. 17. Suppose, further, that we set up this target in a

vertical plane at a convenient distance away and shoot at it 100 times

with a good rifle. If the rifle is accurately aimed at the intersection of

the dotted lines the hits will be distributed symmetrically above and

below the horizontal dotted line and to the right and left of the vertical

dotted line, just as in the case of the pencil hits described in Art. 87.

If we take the horizontal line as z-axis, the vertical lirv as y-axis, and

* See Chauvenet’s Spherical and Practical Astronomy, Vol. I,p. 156.



300 THE NORMAL LAW OF ERROR [Chap. XIV

a line through the intersection of these and perpendicular to the plane
of the target as 2-axis, the hits will be distributed on each side of the
vertical line according to the formula

(92: 1) * = —e-V*:
V~

I

Yi

Fig. 17

and they will be distributed above and below the horizontal line accord-

ing to the equation

(92:2) z =—
V*

The indices of precision ht and hy in the two directions may or may not

be equal.

Before we can apply formulas (92:1) and (92 : 2) to problems in target

practice we must know the values of A, and hv for the particular gun at

the given range. The precision of a gun is indicated by its probable

error or its mean error (see Art. 101), and these are determined from

firings at the proving grounds.

If r and rj denote the probable error and the mean error, respectively,

we have (see Art. 101)
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Hence

(92:3)

h
0.4769 0.5642

r V

hx
0.4769s 0.5642s

r r,

Note: When using the probability table for the solution of target

problems the student must keep in mind the fact that the argument for

this table is hx, where * is the given or allowable error; but since

As = 0.4769s/r *»0.5642x/ij, it is evident that the proper argument for

entering the table is

0.4769s
(a)

r

when the probable error of the gun is given, and

(b)

0.5642s

V

when the mean error of the gun is given.

Example 1. For a certain 3-inch gun at a range of

probable errors were r, = 10.4 yards and r,*5.8 yards,

ability of hitting at the first shot a rectangular target

30 ft. long.

Solution. The probabilitv that the shot will land in

10 yds. wide is ^

4000 yards the

Find the prob-

18 ft. high and

a vertical strip

Px
hr* 2 r*—- I e~k* x'dx =— I e

-(\*>,
d(A,x);

V* J o

and the probability that the same shot will land in a horizontal strip

6 yds. wide is

P„ = f e~\
t
*'dy =— f e~ iht y^d(hty) .

y/w -i y/r Jo

The chance that the shot will land in both of these strips and therefore

hit the target is

P * P,P« -— f e~ (k» x)1d(h rx) X f
y/ltJ o

But

hi*
0.4769s _ 0 .4769X5

7. 10.4
0.229,
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by (92:3), and
0.4769y 0.4769X3

hyy = — 0.247.

'V *
5.8

Entering the probability table with these values of hx as arguments,

we find

Hen.ce

P x = 0.254, Pv = 0.273.

p = p„py = 0.254 X 0.273 = 0.0693.

It would therefore require on the average about 1/0.0693 = 15 shots to

get a single hit.

Example 2. The mean errors for a certain gun at a range of 3000

yards are

r) z = 8.3 yds., i> v
= 4.6 yds.

If 30 shots are fired at the side of a house 12 yds. wide and 6 yds. high

at a distance of 3000 yards,

(a) How many hits may be expected?

(b) What is the chance of hitting a door 6 ft. X3 ft. in the lower right-

hand corner of the side of the house*?

Solution, (a) If the gun is accurately aimed at the geometric center

of the side of the house, any shot will be a hit if it passes within 6 yards

of the central vertical line and within 3 yards of the central horizontal

line. Hence we have

x = 6 yds., y = 3 yds.; and

0.5642* 0.5642 X 6
h zx = = = 0.407,

Vx 8.3

0.5642y 0.5642 X 3
h„y = = 0.368.

Vv 4.6

From the probability table we find

P,= 0.435, P„* 0.397.

The chance of a hit for each shot is therefore

p . p xpy . 0.435 X 0.397 = 0.173.

For 30 shots the number of hits would probably be 30X0.173 = 5.2 or

5, say.

(b) To find the probability that the door would be hit during the

bombardment we assume that the gun is aimed at the geometric center
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of the side of the house, as in (a). Then the door will be hit if a shot

strikes within the rectangle hounded by the lines x= 5, x= 6, y- -t,
y= — 3. The chance of hitting the door at each shot is therefore

P = P t Py = h-J'e-Mx X~fe\ty
'dy

v 7T J i Vv * 1

—
- f e-‘ k,*>'d(h zx)-

f c~ (h
y
y),d(k yy)

\Zir J o

—— — I e~ (\
y)t

d(hyy)
V^r J o J LV’T J

]•

Hence the two values of h,x to be used in the probability table are

0.5642 0.5642
X 6 = 0.407 and X 5 = 0.340,

8.3 8.3

for which the probabilities are Pa = 0.435/2, Pti = 0.369/2. Therefore

0.435 0.369 0.066

Likewise, the two values of hyy are

0.5642 0.5642
X 3 = 0.368, XI = 0.1226.

4.6 4.6

The corresponding probabilities are found from the table to be

0.397 0.138*

Hence P„ = 0.397/2-0.l38/2 = 0.159/2, and we have finally

P = Px X Py
0.066 X 0.159

4
0.0026.

The door will be hit unless every one of the 30 shots misses it. The

chance that any shot will miss it is 1—0.0026 = 0.9974. The chance

that every one of the 30 shots misses is therefore (0.9974)*°= 0.9249.

The chance of a hit is therefore 1 —0.9249 = 0.0751.

The door would probably be hit once out of the every 1/0.0026 = 380

shots.

Example 3. Find the number of shots necessary to make the odds 10

to 1 in favor of at least one hit on the side of the house mentioned in

Example 2.
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Solution , The house will certainly be hit at least once unless every

shot misses it. The chance that any shot will be a hit was found to be
0.173. The chance that any shot will miss it is therefore 1—0.173
= 0.827. The chance that every one of n shots will miss it is then
(0.827)*. The chance of at least one hit is therefore

P = 1 - (0.827)*.

Since.the odds are to be 10 to 1 in favor of a hit, we have i* = 10/11.

Hence

or

10
1 - (0.827)* = — , or

11

.'. n log (0.827)

(0.827)"

- log 11,

-log 11 _ -1.0414

log 0.827
“

9.9175 - 10

- 1.0414

- 0.0825
12.6 = 13, say.

93. The Principle of Least Squares. Suppose we make a set of n
measurements nt\, • m„ of some object or quantity in an effort

to determine as nearly as possible its true magnitude, using the same
care, methods, and instruments in making each measurement. If we
try to read the measuring instrument to the finest subdivision of its

graduated scale and even estimate fractions of a subdivision, we shall

find that the results of the several measurements do not agree exactly

,

among themselves, however much care we may use; for each measure-
ment is subject to unavoidable accidental errors. How, then, shall we
decide upon the best result obtainable from any given set of measure-
ments or observations?

This question is answered by the Principle of Least Squares,
which

says that the best or most probable value of the measured quantity is

that value for which the sum of the squares of the errors is least. This
answer is in accord with reason and common sense; for, since the acci-

dental errors are real quantities their squares are positive quantities

and the requirement that the sum of these positive quantities shall be

as small as possible insures that the errors themselves shall be as small

numerically as possible.

Furthermore, the requirement that the sum of the squares of the

errors shall be a minimum leads to the result that the arithmetic mean
or average of the measurements is the best value obtainable from any
set of equally trustworthy direct measurements. This result is in ac-

cord with experience and common sense.

The principle of least squares also follows from the Normal Law of

accidental errors, as we shall now show.
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If we make a set of measurements all with equal care and use the
same methods and instruments for each, the precision constant h of
the probability equation will be the same for all the measurements and
the frequency of the accidental errors will be given by the same prob-
ability curve. If the accidental errors of the n measurements
ntu W2 ,

• • • wz n be denoted by x2 ,
• •

• xn , respectively, then the
respective probabilities of these errors are

Pi = P* =— cr'Wdx2 ,

• •
• pn

V* ^ e-h-xn JXn
V

*

Since the separate measurements are independent events, the prob-
ability that the set of errors xu x2t

•
• xn will be made is the product

of their separate probabilities, or

(93: 1) P - p xp 9 -
(l

»

2+x *+' ‘+*n')dxidx2 • •
* dxn .

Now since small errors occur more frequently than large ones, a set

of small errors is a more probable event than a set of large ones in

making any set of measurements. Hence the set which has the greatest

probability will give us the best or most probable value of the quantity

measured
;
and since the differentials dxu dx2t etc. are perfectly arbitrary

quantities (the smallest subdivisions of a graduated scale, for instance)

it is evident from equation (93:1) that this probability P is greatest

when the exponent of e is least, that is, when

Xi2 + jc 2
2 + •

• + *n = is a minimum.

Thus, by the principles of probability we arrive at the Principle of

Least Squares
,
namely:

The best or most probable value obtainablefrom a set of measurements or

observations of equal precision is that value for which the sum of the squares

of the errors is a minimum.
Note . Any measurable quantity has a definite, true magnitude; and

the differences between this unknown magnitude and the several meas-

urements made to determine it are the true errors of those measure-

ments. However, when these errors are required to satisfy the condition

that the sum of their squares shall be a minimum, for the purpose of

arriving at the most probable magnitude of the quantity, they become

residual errors, or simply residuals (see Art. 95). But it is shown in

Art. 97 that the sum of the squares of the residuals is least when the

sum of the squares of the errors is least.

94. Weighted Observations. If the measurements are not of equal
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precision, the values of h will be different. The probabilities of the

errors will then be

hi t . hi , . h% , .

Pi — —3 e~k‘ ** dxi, pi = —37 e~h> ** dxi,-
• pH= —— erk» *» dxn ;

y/v y/x y/ic

and the probability of their simultaneous occurrence will be

(94: I) P=pipi •••/>„=
hihi • • A»

(V*)"
e~ • • • dxK .

The best value obtainable from this set of measurements will therefore

be that for which

(94: 2) = hi x? + h£x£ + • •
• + h„2 x 2

is a minimum.

Since it is not customary in practice to make such an expression as

(94:2) a minimum, it is necessary to introduce here the idea of weighted

measurements or observations. By the weight of an observation is

meant its relative value or importance when compared with other ob-

servations of a set. Thus, if we measure a line three times with the same
care and accuracy, we regard the mean of the three measurements as

more reliable than any one of the single measurements. We express

this by saying that the weight of the mean is three times that of a

single measurement. An observation of weight w is therefore one which

is equivalent in importance to w observations of unit weight.

To find the relation between weight and precision index let

h = precision index corresponding to weight 1,

hi — precision index corresponding to weight W\.

Then the probability of an error of magnitude* in the observations of

unit weight is given by

h
< 1

p ——trk 1 dx\
y/r

and the probability of an error of the same magnitude in a set of obser-

vations of weight Wi is

The probability of the same error (of magnitude x) in Wi observations

of unit weight is

p mm p-p-p • • • to wi factors = p
v

> (^—

—

^
e~"'

kt
*Xdx)"i.
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Now if the weighted observation (wt. toi) is to be worth as much as
the v>i observations of unit weight, an error of magnitude * must have
the same probability in it as in the case of the Wi observations. Hence
we must have

Pi = P,
or

for any x. Taking logarithms,

*1 h
log*— ~ hfx* s wi log.— - w,A*x* + (wi - 1) log,dx.

V* V*

Equating coefficients of like powers of *,

, ,
U»

*i* = Wi**, or W\ —
A*

Likewise, for observations of weights wt , u>*, etc., we have

. , ., hi•

hr = »»**, or w* = —

;

hf - to***, or to* = —

;

etc.

The weights are therefore proportional to the squares ofthe precision indices.

Substituting in (94:1) the values of *i* ,
A** , etc. as given above, we get

^tPxW* w»\nlt

-) 1 • • • dXn.

In order that P be a maximum we must have

(94: 3) JZirx* * wj*i* -f w%xf + • •
• + to,*,* a minimum.

We can now state the Principle of Least Squares in its most general

form:

The best value of an unknown quantity that can be obtained from a set

of measurements of unequal precision is that which makes the sum of the

weighted squares of the errors a minimum.

95. Residuals. In the preceding articles of the present chapter we
have been discussing the errors of observations and measurements. The
true or exact magn. ide of a quantity can not be found by measure-

ment; for the unit o: measurement and the quantity to be measured



308 THE PRINCIPLE OF LEAST SQUARES [Chap. XIV

are, in general, incommensurable. Moreover, all measurements are sub-

ject to errors of some kind. It is obvious, therefore, that the error of a

measurement can never be determined, the error being defined as the

true value minus the measured value. What we actually do, and all we
can do, is to measure the quantity as many times as may be desirable

or convenient and then find from these measurements the most prob-

able value of the measured quantity. The difference between the most

probable value and any particular measurement is called the residual

for that measurement. For consistency in sign we always write

Error = True Value— Measured Value.

Residual = Most Probable Value— Measured Value.

Let w0 denote the most probable value of a measured quantity and

let mi, m2 ,

- • • m n denote the values of n separate measurements. Then
if V\

y
• • Vn denote the residuals of these measurements, we have by

definition

Vi = m Q — nil,

V'i = mo — ni-2,

Vn = Wo - Pin-

96. The Most Probable Value of a Set of Direct Measurements. The
definition of residuals leads us up to the problem of finding the most

probable value of a set of measurements. Suppose we make n direct

measurements on some unknown magnitude, how shall we determine

the best value of the magnitude, on the basis of the n measurements?

To give a general answer to this question we shall first assume that

the measurements are of unequal weight.

Let mi, m2 ,

• * • m n denote the n measurements and let wu w2 ,

• • • w n

denote their respective weights. Then if m denote the true value of

the unknown magnitude, the errors of the several measurements are

Xi = m — mi, x2 = m — m
2f

•
• xn = m — mn .

Now the Lrue value m is unknown and can not be found, but we must
adopt some value for it. The principle of lea$t squares says that the

best value is that which makes the sum of the weighted squares of the

errors a minimum (Art. 94); that is,

(96: 1) /(w) = Wi(hi — mi) 2 + w2(m — m 2)
2 + • •

• + wn(m — mn)
2

must be a minimum.
Differentiating (96: 1) with respect to m, putting the derivative equal

to zero, and replacing m by m0 ,
which is to be the adopted value of w,

we have
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U>1 (wo-Wi) + (m 0— m-,) + •• + »„ (ma-mn) = 0,

from which

(96 : 2)

Wittti -j" Wtfn* + + wnmn J"\wr,i
Wo —

.

w i + w2 + • • + wn 'JTw

This value Wo is called the weighted wean of the several measurements.
If all the measurements are of equal weight, then Wi ==«*>== • • • = wn>

and (96:2) reduces to

(96 : 3 )

m\ + W‘> + •
• + mn

Wo = - — ,

n

which is simply the average of all the measurements. This result is in

accord with experience and common sense.

Formulas (96:2) and (96:3) enable us to prove the following impor-

tant theorem:

In any set of measurements of equal weight the algebraic sum of the

residuals is zero
,
and in a set of measurements of unequal weight the

algebraic sum of the weighted residuals is zero.

To prove this theorem let m 0 denote the most probable value of the

n measurements m u • w,
t : and let V\, v2j • • v n denote the

residuals. Then
V\ = w 0 ~ Wi,

V-: = w., — W :

,

Vn = Wn — W.*.

Adding these n equations, we get

v\ + v* + * •
• + vn = ww 0 — (wi + w 2 + • * + m n)

= nwo — nm o 0, by (96: 3)

.

To prove the second part of the theorem let W\, w2 ,

• • wn denote the

weights of the several measurements. The weighted tesiduals are

IC’il'i = WiWo — WiWI,

W2V2 — W«W 0
— W«m 2,

WnVn = WnWo - Wn-

Adding these n equations, as before, we get

WiVi + WtVi + • • • WnVn * tn0(wi + »,+ •••»»)- (WiWi + WiVti + •
• )

= 0, by (96:2).
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This theorem provides us with a valuable check on the computed

residuals in any set of measurements. However, since the residuals in

such cases are rounded numbers their algebraic sum will rarely be

exactly zero.

v 97. Law of Error for Residuals. We shall now show that when the

errors of a set of measurements follow the Normal Law of error, the

residuals likewise follow a similar law. To prove this let m denote the

true Y&lue of the measured quantity; mo the most probable value;

*i. «*,-•• the errors of measurement; vu i>j, • • • v« the residuals; and

Wt, wt ,

• w„ the weights. Then

to to

#i = mo — «i, = m — mi,

Vt * m0 — mj, e2 = m — m 2>

vn - m0 - m„. e„ = m — m„.

For the case of measurements of equal weight we have from column

y.r = »m0
— ]£m = 0, or mo =

and from column («) we get in a similar manner

= nm — £m, or = nm —

Substituting this value of Sm in the equation m0 = 2m/«, we get

(97: 1)

nm —
m0 = m

n n

Now substituting this value of m0 in the equations of column (v),

we have

1 1 1

(97: 2) Pi = m 2Je — mi “ m — mi * *i
» n n

1 1 1
“ «1 *1 «* — * * <n,

n n n

(»-l\ 1 1

fi* Ki *s
— —

<

\ n / n n

Similarly,
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1

Pj 1] +
n

1 1

«»,

n

We have thus proved that the residuals are linear functions of the
errors. Hence by Art. 90 they follow the Normal Law.

If h is the precision index for the t’s and H that for the p’s, we have
from (90:12)

/

n

- iy 1 1

1 \ « / F
.

.

1

«s

F*
~

ti1 h1

or 1 n - 11
IP n h'-

Hence

(97:3) II II
ft-

1
18 1

1

[(« - D 2 + »- 1],

Since the residuals follow the Normal Law, the probability equation

for them is

(97:4) y = JL e-H\\

\/tt

From (97: 3) it is plain that the precision index for the residuals

is a function of both h and n, and that it is always larger than h. This

means that the graph of (97 : 4) rises higher in the middle and falls off

more rapidly on each side than does the graph of (89: 15). As the

number of measurements increases, the graph of (97:4) approaches

that of (89: 15) more and more closely, and would ultimately coincide

with it if the number of measurements were increased indefinitely.

When the measurements are of unequal weight, the weighted residu-

als and weighted errors are as given in the columns (wv) and (wt) below.

(wv) (we>

Will — WiPIq — Wiftti, W\€\ = W\

m

— wiffli,

W&2 = wtfriQ — W2PI2, W2*2 = Wtfn “ W2W2,

wnvn = Wntno — wnmn WnCn = Wnm — Wntrin-
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On adding the equations (wv) we get

^wv = w 0 — ^2wm = 0, by (96: 2)

.

Y.wm
w0 =

By adding the equations in column (we) we obtain

Y.we = m — y^wm t or ^wm = m — Ywe.

Substituting this value of 2wm in the expression for mQ above, we get

(97: 5)

Hence

m ~~ Yw* y^wew0 = = m —
4
w

Ywe Ywe
(97: 6) Vi = w 0 — Wi = w — Wi ^— = €i

—

—

2^w 2-jW

W i€i w2e2 W3e 2
= €i

—

or

Similarly,

etc.

Zw Zw Zw z®
'

wl\ W2 Wn Wn

z»/ z*
4’

Z»** E

‘ + ( 1

Wl Wz

w \ zJ Z*“

w

Wn

.W
c»,

Hence in the case of measurements of unequal weight the residuals

are linear functions of the errors and therefore follow the Normal Law.

The residual V\ ,
for example, would follow the law

* 1

1 H 1

y = e H i
V

1
,

v*
where

’( ZLW ^l)
2 ^2* Wn!

1 [_ • • •
-f-

•

w ( Z«o 2 L A** A,
3-

And similarly for the other residuals.

On squaring and adding the n equations — (l/»)2e, »i=ti

— (l/»)2e, etc., we obtain

(97:7) Z*2 - Z«2 ~ -( E«) 2
,

n

which gives the relation between th& sum of the squares of the residu-

als and the sum of the squares of the true errors in any set of measure-



Art. 97
] LAW OF ERROR FOR RESIDUALS 313

ments of equal weight. Since both terms in the right member of (97 : 7)

are positive quantities, it is evident that the sum of the squares of the

residuals is always less than the sum of the squares of the errors, but

that the difference is very slight.

Inasmuch as the quantity 2c is very nearly zero in any set of measure-

ments, the square of this quantity is still smaller and (l/n)(2c) 2
is

practically negligible in comparison with 2c 2
. Hence any small shift

in the values of the c\s would have very little effect on the already

negligible quantity (l/w)(2c) 2
. We may therefore consider this quantity

constant for small changes in the c’s, and then it is plain that 2z> 2
is

least when 2c 2
is least.

This can also be shown in a different way. From equation (97:7) we
have

2>- («i + «* + ••• + <>i)
s

n

(«1* + *2* + ’
' + «»* + 2* 1*2 + 2«it3 + ‘ + 2t„-l«n)

n

Now when the number of measurements is large, the product terms

2*i*2 , 2*1*3, etc. will be about half positive and half negative; and they

will average about the same size. Hence they will cancel one another for

the most part and then 2t>
2 reduces to

(«i* + *2* + •
• + t» )

n

From the foregoing considerations we are justified in asserting that

The sum of the squares of the residuals is a minimum when the sum of

the squares of the true errors is a minimum, and conversely.

In a similar manner, on squaring the n equations Vi= «i— 2we/2w,
= —2we/2w, etc., then multiplying the squared equations by the

corresponding weights wi, Wi, etc. and adding the results, we get

(97: 8) £w«
2 — 1

( !»*•

Here, again, we see that the sum of the weighted squares of the re-

siduals is a minimum when the sum of the weighted squares of the true

errors is a minimum, and conversely, since the negligib}e quantity

(l/2w)(2i«) 2 may be considered constant for small changes in the *’s.

Remarks. Equation (97:1) shows that the arithmetic mean is equal
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to the true value of the quantity minus a very small quantity; for since

the errors are as likely to be positive as negative the quantity 2e is not

large, and (1/h)S« is still smaller. Hence the larger the number pf

measurements the nearer does mo approach the true value of the quan-

tity measured. Equation (97:5) shows a similar result in the case of

weighted measurements.

Equations (97:2) and (97:6) show that any residual is equal to the

corresponding error minus a very small quantity. Therefore when the

numbter of measurements is large the residuals are practically equal to

the true errors. Hence, although we can never determine the true

magnitude of a measured quantity we can determine it as closely as we
please by taking enough measurements.

98. Agreement between Theory and Experience. At the beginning

of this chapter we described an experiment which was designed to show
the behavior and distribution of accidental errors. In deriving the

Probability Equation we made the assumptions that the probability

of an error depended upon its size and that positive and negative

errors of the same size were equally likely. These two assumptions

were supported by the pencil experiment. The first is based upon ex-

perience, but the second is evident on purely a priori grounds and also

supported by experience. No rigorous deduction of the Normal Law,

based upon purely a priori considerations, has ever been given. The
truth is that, for the kinds of errors considered in this book (errors of

measurement and observation), the Normal Law is proved by experience.

Several substitutes for this law have been proposed, but none fits the

facts so well as it does.

To show how well the Normal Law agrees with experience when the

number of measurements is large, we give in the table below the results

of 470 observations made by Bradley on the right ascensions of the

stars Sirius and Altair.

Size of errors
Number computed

from theory

Number actually

found

0".0to 0".l * 95 94

O'M to 0" . 2 89 88
0"

. 2 to 0".3 78 78

0".3 to 0".4 64 58

0".4 to 0".S 50 51

0".5 to 0".6 36 36
0"-6 to 0".7 24 26

0".7 to 0".8 15 14

0".8 to 0".9 9 10

0".9 to 1".0 5 7

over 1".0 5 8
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It will be seen that the agreement between theory and experience is

remarkably close, with the exception of the number of errors of magni-

tude from 0".3 to 0".4.

EXAMPLES ON CHAPTER XIV

1. Compute the value of the integral f^’e-^dt correct to seven

decimal places.

2. Compute the value of correct to five decimal places.

3. Find the probability of hitting at the first shot a rectangular

target 60 feet wide and 24 feet high at a distance of 4000 yards, the

mean errors for the gun at this range being

n x - 7.4 yds., ny — 5.2 yds.

4. If 20 shots are fired at a cylindrical standpipe 120 feet high and 40

feet in diameter at a distance of three miles, find the chance that the

standpipe will be hit if the probable errors of the gun for this range are

r x = 14.2 feet, rv = 10.6 feet.

5. If the foretop of a battleship is a cylinder 12 feet in diameter and

8 feet high, find the chance that it will be hit by a shot aimed at a point

80 feet directly below, the mean errors for the gun in this case being

« x = 42.6 feet, ny — 36.5 feet.

About how many shots would have to be fired at the ship (aimed at a

point 80 feet below the foretop) before the foretop would be hit?

6. Twelve measurements of the length of a line are given below. Find

the most probable length of the line.

364.2 364.2 364.3

364.4 363.7 363.8

363.9 364.1 364.3

364.3 364.5 364.0

7.

Seven measurements of an object by different methods are given

in the following table. If the weights of the different measurements are

as given in the table, find the most probable size of the object.
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Measurements Weights

369.2 2

368.3 1

371 .

1

3

370.2 5

369.1 2

370.6 4

372.2 1

Compute the residuals and weighted
.
residuals. Find the algebraic

sum of the weighted residuals and the sum of the weighted squares of

the residuals.



CHAPTER XV

THE PRECISION OF MEASUREMENTS

99. Measurements, Direct and Indirect. Direct measurements are

those made by methods and instruments whose indications give direct y

the quantity sought. Such measurements are usually made by reading

a scale graduated in terms of the chosen unit. Yard sticks, clocks, volt-

meters, chemical balances, etc. are instruments for making direct

measurements. . , .

Indirect measurements are those in which the quantity measured

not given directly by observation or readings taken, but must be calcu-

lated from them. Thus, in an indirect measurement the quantity sought

is a function of one or more directly measured quantities. Por example,

if we measure two sides and the included angle of a plane triangle we

can find the remaining side and the area by means of the formulas

Area = \bc sin A .

a = s/P + c
J — 2be cos A

,

Here the directly measured quantities are b, c. A, and the indirectly

measured (computed) ones are a and the area.

The relation between observed and computed quantities may be ex

pressed by the general formula

y = /(*i, *2 ,
x 3 ,

a, b, c,

.here , „,d the represent observed or computed quantities and

a b e etc. represent numerical constants.

M Precision and Accuracy. The words “precision” and “accuracy”

measurement would be one ™
'bfone'i^BffiSlSS

measurement, on the other nai u,
. , . i prmrs Barring

errors—mistakes, systematic .errors, and aca^|I •

mistakes, thesystematic error is thus u the

value and the accurate or true value of thejant.ty m

measurement.
317
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I. DIRECT MEASUREMENTS

101. Measures of Precision. The precision of a measurement can

be estimated in several ways. The three measures of precision in com-

mon use are the following: the mean square error (m.s.e.), the probable

error (p.e.), and the average error. These three measures are denoted

by the letters ft, r, 17, respectively. We shall now derive expressions

for them in terms of the precision index A.

10,1a). The Mean Square Error (m.s.e.). In discussing the error

equation

j* _ h
i .1

y = e h X

Va-

in Art. 89, we stated that A is called the index of precision and indicated

the reason for this name. Then in Art. 93 we found that the prob-

ability of the simultaneous occurrence of a set of errors Xi, *», x„

in a given measurement is

(101: 1) P - p!pt pn = (^=)" e-h
'(x

'+z '+, -+z* )dxldxt dxn .

It was also shown in that article that the best or most probable result

obtainable from a set of measurements is that corresponding to the

maximum value of P.

,
Let us now assume that a given set of « measurements has been made

and let us try to find the best or most probable value of the precision

index A for this set of measurements. It is that value which makes P a
'-'maximum and is found by differentiating P with respect to h and
putting the derivative equal to zero. We thus get from (101 : 1)

dP / h \
B ... r ,— =

J
*-*?<•, 2A(*i* + ** + ••• + xi)]

+ c-A'u,*+*,*+•••)»('AY ‘_L=
0,

\\rtr/ \/t

(«,*+*,«• ••/—

\

Wr)
h \~ l

1

[— 2A*(ati* + *** + ••• + *»*) + »] — 0.
’r) y/ir '

- 2A*(*i* + *2* + • •

1 xi + xi +

+ xi) + n - 0
,

from which

1 /xi + **•+
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The quantity on the right is usually called the mean square error
(m.s.e.) of a single observation and is denoted by the Greek letter p.
We therefore have

(101 : 2)
J t

/*f + xf + --
- + x*

W2 V n

101b). The Probable Error (p.k.). The probable error , r, of a single

measurement of a series is a quantity such that one half the errors of

the series are greater than it and the other half less than it. In other

words, the probability that the error of a single measurement will fall

between r and — r is and the probability that it will fall outside these

limits is Hence we must have

/
+r h n _ 1 h r r

1

—_e~ h '
T dx = — j or —: I e~ h * dx = — >

. r \Ar 2 4

since the probability that an error lies between any given limits is

represented by the area under the probability curve between those

limits.

To find the value of r from the above equation we put

Then

and we have

/ = hx.

dt = h dx,

J

* hr \Zir C p

e~ t2
dt = j or I e~ t2dt = 0.4431135, where p = hr.

o 4 J 0
*
—

Now
/* /

l0

+
2 6 ^ 24 120

t* /« <
8

/
,0/•/> / t* /« t

8
/
,0

\
e~‘ dt = I ( 1 - <

2 + + f-
- * -)<£/ = 0.4431135,

o Jo \ 2 6 24 ,120 /

or

(101:3)
p» p

8

_ p? _P^ P^_

T^IO 42
+

216 1320
0.4431135 0 .

*

This is the equation which we have already solved in Art. 61 and

found p = 0.4769363. The value of p can also be found by interpolation,

as we have already done in two ways in Exs. 2, Art. 21 and Ex. 1,

Art. 24.
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Using now the relation p — hr, we get

P 0.4769
T ~

h
°-4,69

(t>

and from (101:2) we have

Hence

1 _ /*1* + *** + •• +
7-V 7

/

x

i
2 + Xi* + • •

r = 0.4769v/2/(/

/*il + x2
i + • •

• + :

= 0.674Sy

(101:4) r = 0.6745/
/*i

2 + *2* + • + a\.
s

i07c). The average error is the arithmetic mean of all the errors of a

set, without regard to signs. Thus,

(101:5)
•Til +| .r*| + • •

- + |
arn |

To find an expression for ij in terms of h let us suppose that a set of »

measurements has been made, and that each measurement is affected

i with an error of some size. In the case of any single measurement the

probability of an error of magnitude x to ar+Ax is approximately

yAx= (h/y/ir)e~k
*x*Ax (Art. 88). Hence the probable wwwier of errors

of this size in the n measurements is n times this probability, or

(nh/y/ic)e~
kl*i

Ax. The sum of these errors is therefore the number of

errors times the size .of a single error, or (nhxjy/w)e~h2z'Ax. The sum
of all the errors of all sizes is therefore

-/
nhx— e-^dx

2nh r •
. ,

’UiJ

' 2h,xix) " I:



,02) relations between precision measures

V =

= 0.67 45#* = lu, tougWy,

0.6745
= 1.4826r.

Am.

Hence

(
101 : 6) "

ky/i

102. Relations between the Precision Measures. From (101: 2)

and (101:4) we have

(102 : 1)

and

(102 : 2)

Also, since

we have

(102: 3)

Hence

(102:4)

1
.

/•' >

J + x? +• ' ‘

7 " VH

1 1

T) = - - -- = ft

It \ r \ .

= O.X)u, approximately

- 0.76788it

= 1.2 5 337,.
0. 767X8

Furthermore, from (102:2) and (102:4) we get

1.4826r = 1.2533t,.

(102:5)
1

r — —.2533
t

;

1,.4826

and

(102: 6)
1

v — —.4826
r

1 .2533
r = 1 . 1829r.

All these relations are shown concisely in the following table:

r V

M = 1.0000 1 .4826 1.2533
r = 0.6745 * 1.0000 0.8453
’7
= 0.7979 1.1829 1.0000
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103. Geometric Significance of /x, r, and »?. From the definition of r

it follows that its corresponding ordinate to the probability curve bisects

the area under that curve on either side of the y-axis.

The quantity ji is the abscissa of the point of inflection of the prob-

ability curve, as we shall now show.

Taking the second derivative of

and equating it to zero, we have

Hence

or

dx

d*y 2 h* . .—- e~k x
{\ - 2A2x2

)
= 0.

dx* x^ir

1 - 2h*x* = 0,

X = ± = ±
hy/2

The precision measure jj is the abscissa of the center of gravity of the

area (under the curve) on either side of the y-axis. To prove this we
recall that if x0 denote the abscissa of the center of gravity of that area

we have

*o
2h\J7T .

_ 2h*x)dx

area 1/2

1

V-

The relative sizes of the precision measures and their geometric rela'

tions are shown in Fig. 18.

Fig. 18
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The question naturally arises as to which precision measure is the

best for practical use. On this point there is no universal agreement.

In continental Europe the m.s.e. is used almost exclusively, but in

England and America the p.e. is more often used. The average error

is also used in America, but usually under the name average deviation.

The m.s.e. is quite generally used in Mathematical Statistics, where
it is called the standard deviation and denoted by o.

The average error is the easiest of all to compute, and the p.e. is the

most laborious, because of the factor 0.674S. Nevertheless, in this book
we shall conform to American practice and use the p.e. almost ex-

clusively.

104. Relation between Probable Error and Weight, and the Probable

Error of the Arithmetic and Weighted Means. In Art. 94 we derived

the relation between the precision index h and the weight w of an

observation, namely:

A,2
hi* hi* hn

*

(104: 1)
•

W\ U»J V>1 wn

Then in Art. 101 we found the relation

Hence

r
P_

h
'

where p 0.4769.

h
p

r

Let wu be the weights of observations whose probable

errors are ru rs ,
r„ respectively. Then

hi
P

r.

Substituting these values for hi, ht, • hK in (104:1), we get

or

r i* Wi r2* it's r«

1 _ J_ _
1

ri*Wi rfwi riwn

Wy r»*

Hence
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The weights are thus inversely proportional to the squares of the probable

errors.

This relation (104:2) enables us to find the p.e. of the arithmetic

and weighted means of a set of n direct measurements.

To find the p.e. of the arithmetic mean of n direct measurements of

equal weight, let the weight of each measurement be 1. Then the

weight of the mean of all the measurements will be n . Denoting by r

the p.e. of any single measurement and by r0 the p.e. of the mean of

all the measurements, we have from (104:2)

1 r0
2 r-— = — f or r 0

2 = — •nr2 n

Hence the p.e. of the mean is

(104:3) ro=4_-
V«

If the measurements are not all of equal weight, let W\, wtl wn

denote their weights. Then if r denote the p.e. of a measurement of

unit weight (w = l) and r,- the p.e. of a measurement of weight wit we
have from (104:2)

L =
rl

Wi r1

Hence

(104 : 4) ri
= ~7=-
V»i

Now the weight of the weighted mean is 2!w—wi+wt+ • • • +wn.

Hence by (104:4) the p.e. of this mean is

(104: 5) r0 = —4= —
.. .

f = •

V V U>\ + Wj + • • • +

Formula (104:3) shows that the p.e. of the arithmetic mean can be
decreased by increasing the number of measurements. A glance at the

graph of this equation shows, however, (see Fig. 19) that the decrease

is very slight after several measurements have been made. Usually it

does not pay to make more than ten measurements for the purpose of

reducing the p.e. of the arithmetic mean.

105. Computation of the Precision Measures from the Residuals.

So far in our discussion of precision we have been considering the errors

or r? =
Wi
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of measurements. Since the true errors can not be found, it is necessary

to derive formulas for the precision measures in terms of the residuals.

Fig. 19

In Art. 97 it was shown that when the errors of a set of measurements
follow the Normal Law of error, the residuals likewise follow a similar

law. The probability equation for any residual will therefore be of the

form

II
(105: 1) y = — e~H

V*

for measurements of equal weight, where/Z= hv'n/(n — 1). (See Art. 97.)

For a set of n direct measurements of equal weight we therefore have

for the n residuals the following probabilities:

II
2 ,

II , „ // .
.

pi = —_ e 11 v
* dv i, p 2 = —~e~H V

*~dv2 ,

• •
• pn = c'

ir '’rdvn .

y/TT \Zt

The chance that this particular set of residuals will be made in any set

of measurements is then

(105:2) P = pip2 - pn

n

e-H
t(v*+v?+---+v»1

‘dVldV2 . .
. dvn .

Differentiating (105:2) with respect to H and putting the derivative

equal to zero, exactly as was done in Art. 101, we get

1 /Vl2 + V
2 + * •

* + Vn

HV?
= V n
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But

Hence
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or

1 1 /» -

1

= 4/ > and
H hr n V2

M

1 1 /* “ 1

H\/2 ” hy/l\ n
~ M

1

/n- 1

K ,
•

/» - 1 /»i* +»!* + •• + »,*

“V n ~V >

r = 0.6745m = 0.6745/

(105: 3)

Therefore

(105:4) . ,
n — 1

For the p.e. of the arithmetic mean we have

(105:5) ,4 = 0.6745/l!L.
y/n V n(« — 1)

If the measurements are not all of equal weight, the residuals will

not have the same weight. They can all be reduced to unit weight, how-
ever, by multiplying each of them by the square root of its weight.

This follows from (104:4), since riy/wi^r.

Let ®i, »*,•••», be the residuals of n measurements of weights

wii w», • • • w„. Then the residuals reduced to unit weight are

v{ = Viy/v>i,

v» = Vty/w2 ,

Vn = Vn\/wn .

Squaring these equations and adding, we get

(105: 6)

Now for a set of measurements of equal weight we have from (105:4)

r - 0.6745a/3e2.
V n— 1
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Replacing 2v'* by its equal from (105:6), we get

(105: 7) r = 0.674 = Q 6?4g
+ • •

• + wnv*

This is the p.e. of a single measurement of unit weight.
To find the p.e. of a measurement of weight Wi and the p.e. of the

weighted mean we have from (104:4), (104:5), and (105:7)

(105 : 8) rt = : = 0.67454/ ,wv‘

(n — l)w,-

(105 : 9) ro =
v'

= 0.67454? wv*

1)
»

It will be observed that (105:9) reduces to (105:5) when all the
weights are equal.

We now collect for easy reference the fundamental formulas for com-
puting the p.e. of direct measurements.

(a) Measurements of equal precision, p.e. of a single measurement:

(105:4) f = 0.6745
/V +»/ + ••• +
v—rr,

—

P.E. of arithmetic mean :

(10S: 5) r0 = 0.6745V
hi + v£ + • + V

n(n — 1)

2
n

(b) Weighted measurements, p.e. of a single measurement of unit

weight:

/u<iV I* + WnVi2 + • •
• + «'»!'„*

(105:7) r = 0.67454/
\ n — 1

p.e. of measurement of weight w

(105:8) r, = 0.67451/

p.e. of weighted mean

:

Wills* + W2Vs* + • •
• + WB«n

4

(» - l)w,

/ «'1»S

'• - °- 674Vr»“
«'1»S

2 + W2»SJ + • •
• W„t'„2

(» - l)(Wj + wt + 1- Wn)

(105 : 9)
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106. The Combination of Sets of Measurements when the P.E.’s

of the Sets are Given. When several separate determinations of the

magnitude of a quantity have been made by different observers or by
different methods and the probable errors of the separate determinations

are given, it is important to know just how to combine these several

results so as to obtain from them the best value for the measured

quantity and the probable error of this best value. For example, the

results of five different determinations of the atomic weight of silver

are given below. How can we obtain from them the best value for the

atomic weight and how can we find the p.e. of this value?

107.9401 + 0.0058

107.9406 ± 0.0049

107.9233 ± 0.0140

* 107.9371 ± 0.0045

107.9270 + 0.0090

This is really a problem in indirect measurements, but it can readily

be solved by the methods already given. The proper method of pro-

cedure in a problem of this type is first to compute by the relation

(104:2) the weights of the several determinations from their given prob-

able errors and then find the weighted mean of the given values of the

measured quantity. The p.e. of this weighted mean is to be computed

by formula (104:5).

It would be incorrect to compute the p.e. of the weighted mean from

the residuals by formula (105:9), because this formula can take no
'account of the magnitudes of the given probable errors. It takes account

only of their ratios and would give the same result if all the given

p.e.’s were ten times as great or only a hundredth part as great as

they actually are in any given case. This statement will now be

proved. *

Let » sets of determinations of the magnitude of some quantity,

with their corresponding probable errors, be denoted as follows:

M\ ± kei,

Mi ± kit,

M

n

i ktn,

* See also a paper entitled “The Invalidity of a Commonly Used Method for Com-
puting a Certain Probable Error,” Proc, Nat. Acad. Set., Vol. 15, No. 8 (August,

1929), pp. 665-668.
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where k is a constant multiplier which we shall call the magnitude factor
of the given f.e.’s, so that ri*=kti, rt — ket, etc. From (104:2) we have
wir} = wtri = • =w„r*=c, say. Hence

c c
I U'2 = ,

kW kw

The weighted mean is

M 0

u<\M\ + wtMi + • •
• 4- uinMn

W’l + tt'2 + • •
• + W n

or

khi

° Mi + + • + ——M,kW
c c c
+— + • +
kw

Mo =

1 1 1

~Mx + —Mt + + —M n

^ <
2

1 1 1

*7
+ 7 + +7

Mi + M. + •
• + £)’ M„

This result, be it noted, does not contain the magnitude factor k, but

only the ratios of the given p.e.’s. Hence it is independent of the size

of the p.e.’s of the M’s.

For the residuals of the M’s we have

#i = Mo — M, =

1 1 1

— (Mt - Mi) + — (Mt — Mi) + • • +— (M„ - Mi)
«2

5
f.1

2 f»‘
- - —
-+-+•• +-
«1

2
<2

2

^
(M2 — Mi) + ^ ^

(Ma -- M s) + + ^(M» — Mi)

1 +
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Pj *=Mo—Mj

=

0(4f,-W+ • •+0 (M, - Mi)

(M l-Mn)+
Vn^Mo—Mn

£>'*-Mn)+
«1

fta
k€»-l/

-Mr)

1 +

Here, too, it is to be noted that the residuals do not contain the magni-

tude factor k, but only the ratios of the given p.e.'s. Hence the re-

siduals are independent of the size of the p.e.’s of the M’s.

Now substituting in formula (105:9) the values of the weights as

given above, we have *

r0 = 0.6745
khi

c c ,
v I* + ——— + • •

• +
kw

. '-(jk

0.6745

y/n — 1 1 1— + —

+

kW

i^i |

* c

+ + " ’ +
* .

i i i

-r»i* H—- Vi* + •
• H—

-

j)\

1

+ —

or

(106: 1) r0

0.6745

y/n — 1

f
Since the v’s do not contain the magnitude factor k, it is evident

that this expression for the p.e. of the weighted mean of the given M’s
is absolutely independent of the size of the p.e.’s of the M's.

Hence it can not be a measure of the true probablewrov of Mo. It is a

measure of the agreement of the M’s among themselves
, and nothing more.

The invalidity of the method of computing the p.e. of the weighted

mean from the residuals in problems of the type considered in this

article is brought out more strikingly if we assume that the given prob-
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able errors are all equal, so that T\ = r*= • • • = r„ and therefore

«x*=«*= • •/ =(,. Then we have

Mi - M x + M, - M!+••• + Mn - Mi J^M - nMx

ces to

2MiEM

y 2>2 - -h 2»*.
1
USpontain a trace of the probable errors

d hence can take no account of them.
.E. of Mo and is in no way related to it.

inal direct measurements of which the

ighted means), as we can easily do by
ms of the, original residuals by means of

formula 7103 "ft) fH^NSMNfrfectly applicable to a set of direct measure-
ssigned arbitrarily), we shall find that the

P.E. of Mo as-’ttompy'Wd* from the residuals of the given M’s is still

independent of the magnitudes of the original residuals but depends
only on their ratios.

Let us next compute the p.e. of M0 by formula (104:5) and examine
the result. In the equations

a>,r1
* = wjfj1 = wnrn

‘ = c

let us put 1, (**>1, 2, • • • »). Then c=r?, or p.e. of a
Measurement of unit weight. Formula (104:5) then becomes
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This value of r0 varies directly with the magnitudes of the given

probable errors and is therefore a true measure of the p.e. of the

weighted mean.

Considering now the case where all the p.e.’s of the given M’s are

equal, we have ei=t»= • • • =e„. Hence (106:4) becomes

r

where r denotes the p.e. of any M. Here, again, the p.e. of Mo varies

directly with the given p.e.’s as would naturally be expected.

The foregoing investigation shows that in problems of the type con-

sidered in this article the p.e.- of the weighted mean can not be found

from the residuals, because the p.e. computed in this manner bears

little or no relation to the true p.e. of the weighted mean. The proper

application of formula (105:9) is to a set of original measurements to

which weights have been assigned arbitrarily.

In some instances, however, it may be advisable to compute the re-

siduals in problems of the type considered in this article. If, for ex-

ample, it were evident by inspection that the given M’s differed widely

among themselves, the residuals should be computed and then sub-

stituted in formula (105:8) in order to find the p.e. of a single measure-

ment of weight W|. The several residuals should then be compared with

the corresponding p.e.’s as found by (105:8) and if any residual be
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T, measurement shouid be rejected by

sections!**"

‘hOW 'he US' of ,h' derived in the preceding

len^a'ba*!'^

silt 'r
’ ,he

indr,rxt
*7 are r™*" ta -w-

meric mean of the given measumZm
the “lu

'r 18 ‘be arith-

by subtracting each measurement from thltrithmerifmLt
”

M, =455.35
Mi

=

455. 35
= 455.20

M« = 455 .05

Ms = 455. 75

Ms = 455 .40

Mi =455 . 10

M, =455.30
Mi = 455. 50

M,o=455. 30

«’i= -0.02
t'2 =-0.02

l'a = +0.13
= +0.28

i's= -0.42

Vr, = —0.07
= +0 . 23

v> = +0.03
Vo = -0.17
Vio = +0 .03

ZM=10X455+3.30 £,, =0

10 X 455 + 3.30

Vi
s = 0.0004

t+

=

0.0004

t'a* = 0 . 01 69

vs! = 0.0784

Vs>=0.1764

vs* =0.0049
«'7*=0.0529
Vo*

=

0.0009
v»*=0.0289

vio
5 =0.0009

S>=0.3610

nr '

10
= 455.3.30.

A r '0.3610
f ~ 0 6745 j/' “7“ = ° 135

’ b>' (105=4).

0.135
fo = ~=r = 0.043, by (105: 5).

The length of the line is therefore to be written

M = 455.330 + 0.043.

probable lahw"^!"
°f

?
ignificant fiSures to be recorded in the most

the numhlr
(arithmetic or general mean) is usually one more than

P E ^77" m thC ,ndlvidual measurements (Art. 6). If the

justified in reen

7

h°U,d
,

be relatively large, however, we are not

the JentaJ
,ng H 'S reSult t0 more figures than are contained in

to the
P
samJ

7

ea®ureTc
nts

' 3nd in SUch cases we record the final resultsame number of figures as given in the data.
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The p.e. of the result is recorded to only one or two significant

figures—just enough to extend to the last figure of the mean. Slide-

rule accuracy is therefore amply sufficient in the computation of prob-

able errors.

In finding the residuals we use only as many figures in the mean as

are given in the individual measurements.

Example 2. The following measurements were made to determine a

certain wave-length. Find the most probable wave-length and its p.e.

Solution. Here we first find the mean and then the residuals as

before. The rounded mean is correct to its last figure as given, but since

the last digit is slightly less than 5 the mean when rounded to three

decimals is 4.505. From this number we subtract the individual meas-

urements to find the residuals.

n M V r*

1 4.524 - 0.019 0.000361

2 4.500 +0.005 0.000025

3 4.515 -0.010 0.000100

4 4.508 -0.003 0.000009

5 4.513 - 0.008 0.000064

6 4.511 -0.006 0.000036

7 4.497 +0.008 0.000064

8 4.507 -0.002 0.000004

9 4.501 +0.004 0.000016
10 • 4.502 +0.003 0.000009

11 4.485 +0.020 0.000400
12 4.519 -0.014 0.000196

13 4.517 -0.012 0.000144
14 4.504 +0.001 0.000001

15 4.493 +0.012 0.000144

16 4.492 +0.013 0.000169

17 4.505 0.000 0.000000

Afo = 4.5055 E

F

- -0.008 2>

-

0.001742

r„ = 0.6745
/0. 001 742

V 17 X 16
” 0.0017, by (105: 5)

M = 4.5055 ± 0.0017.

Remark. Theoretically the algebraic sum of the residuals should be

zero, but this result is based on the assumption that these residuals

are algebraic numbers. The residuals in any actual problem are neces-

sarily rounded numbers, and their algebraic sum is rarely zero.

Example 3. Six measurements of the parallax of a star are given in the

following table. Find the most probable value of the parallax and its p .e.
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M \

•
\

viM 1 V

”
1

W)*

0".507 } 8 1
4.056

'

-0.104
i 0.010816 I 0.086528

0" .438 5 2.190 -0.035 ! 0.001225 0.006125.
0".381 2 0.762 0.022 0.000484 0.000968
0".371 8 2.968 0.032 0.001024 0.008192
0".350 13 4.550 0.053 0.002809 0.036517
0".402 20 8.040 0.001 0.000001 0.000020

^wM
^w = 5t> =22.566 £>vl =0.13835

22.566Mo
= = 0"

. 403

.

56,

r0 = 0.6745

Hence the final result is

V7
13835

5 X 56

M = 0" .403 ± 0" .015.

= 0.015.

Here the r.E. of the weighted mean is so large (relatively) that we
are not justified in recording the result to more figures than are given

in the data.

Example 4. Seven separate determinations of the difference of longi-

tude between two places gave the following results. Find the most

probable value of the longitude difference and its p.e.

1
]Qm 1\42 + 0-.044

2 19 •
1 .37 ± 0 .037

3 19 1 .38 ± 0 .036

4 19 1 .45 ± 0 .036

5 19 1 .60 ±[0 .046

6 19 1 .55 ± 0 .045

7 19 1 .57 ± 0 .047

Solution. The first step in the solution of this problem is to find the

weights of the different determinations from their given probable

errors. From Art. 104 we have

1 1 1
1

, 31

fi* v>\ rf Wz t? c

Hence
r?wi = rfwi = • • = rfwj = c.
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Let us take the weight of the last determination as unity, that is, let

us put
W7=1.

Then c= r^ = (0.04 7)
2

.

Hence

c /0.047y /47\*
Wl ~

rf

~
\0. 044/

~
\44/

~ l A4
>

c /0.047V /47\ 2

"-*-(
0 .037)

= (37)

In like manner we find

wt = 1.70, wt = 1.70, w6 — 1.04, Wt = 1.09.

To save labor in the computation of the weighted mean let us denote

by di, d», • • • dt the differences between the various determinations and
an assumed approximate value of the weighted mean, say 19ml*.40.

Then the various determinations are 19ml*.40+d1( 19ml’.40+d2 ,
etc.;

and their weighted mean is

Mo

(19ml*.40 + di)w x + (19
m l*.40 + d2)w2 + f- (19ml*.40 + d7)u>,

w i + w* + •
• + Wt

(wi + wt + • + W7)(19m l’.40) + widi + w^dt + • •
• + Widi

Wi + w2 + + w7

Widi + w2di + • •
• + w 7d7

= 19ml
,.40 H

v>\ + W2 + + Wt

This equation shows that it is necessary to multiply only the d’s by

the weights. We therefore complete the solution by making out the

table shown below and then using (104:5).

M d w wd

19m l # .42 0.02 1.14

19 1 .37 -0.03 1.61

19 1 .38 -0.02 1.70

19 1 .45 0.05 1.70

19 1 .60 0.20 1.04

19 1 .55 0.15 1.09 0.164

19 1 .57 0.17 1.00 0.170

:
2>**9.28 Ewd-0.S68
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Hence
0.568

Mo = 19m l'.40 -] 19ml\40 + 0.061 = 19m l*.461.
9.28

Then since the weight of is assumed to be 1, we substitute the value
of r j in the formula (104: 5) and get

0.047
r o
= -•= 0S.015.

\/9.28

— = 19'"l a.461 ± QVQ15.

Note. The reader is reminded that the expression M=M0 ± r does not

mean that the true value of .1/ is somewhere between -1/o+r and Mo— r;

nor does it mean that ,1/ is probably in error by the amount r. It means
that, so far as accidental errors are concerned, the true value of M is

just as likely to lie between M^-hr and Mu— r as it is to lie outside of

these limits.

II. INDIRECT MEASUREMENTS

107. The Probable Error of any Function of Independent Quantities

whose P. E.’s are known.

Let

007: 1) Q = f(qu 92, q3 , q„)

represent any function of directly measured quantities qu </2 ,

•
• q u .

Then errors Aq i, Aqif
• • Aq,

t
in the q s will cause an error AQ in the

function (>, so that

Q + A(> = f{q\ + A?i, q« + Aq t , qn + Aqn)

.

Expanding the right-hand member by Taylor’s theorem and proceeding

exactly as in Art. 5, wc get

SO dQ 0Q
(107: 2) AQ = — Ar/i + — Aq t + -\ Aqn .

aqi dq» dqn

This expression for AQ holds for any kind of errors whatever. If

Aqi, Aqt, •
• Aqn are accidental errors, so that they obey the Normal

Law of error, then AQ is likewise an accidental error which obeys the

Normal Law, as proved in Art. 90. In this case equation (107:2) is

exactly like equation (90:2), and all the results of that article apply to

it. Hence if II, fa, fa, hn denote the precision indices of Qu qu

qit • • qn ,
respectively, we have from (90:16)
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Let us denote the probable errors of Q, qt,
•

• qn by R, ru r*, • • •

r„, respectively. Then from the relation p = kr found in Art. 101 we have

1 _
/?*

1 _ r,s 1 _ r2
s

7s ’ w
-
7j

i

An
S

fn— t wherep =0.4769.
P
l

Substituting these values of 1/IP, 1/Ai s
,
etc. in (107:3) and reducing, we

get

(107 : 4)/? so* + +

This formula is of great importance, for it includes all possible cases

of a function of directly measured quantities. It expresses the law of

the propagation of errors and is the foundation of the whole subject

of indirect measurements.

The terms relative error and percentage error may also be applied

to probable errors. The fundamental formula for the relative error in

indirect measurements is obtained by dividing (107:4) throughout by

Q. We then have

(107:5)—
Q sot +

dqj Q* \dqj Q
(*y* + +

dQV ri_

tqJ Q*

for the probable relative error. The probable percentage error is 100

times this.

Formula (107:5) assumes a very simple form when Q happens to

be a product of several functions or a logarithm of a single function.

Suppose, for instance, that

(107:6) Q = Kxmynzp .

Then
dQ Qm dQ Qn dQ Qp

dx x dy y
' dz s

’

*

and when these are substituted in (107:5) we get

„„7;7) |

„

0+,0
for the probable relative error of Q.
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It is worth while to notice here that the p.e. of the weighted mean
of several sets of measurements whose p.e.’s are given (Art. 106) can'

be found by the methods of the present article; for the weighted mean
may be written in the form

Wi
Mo = -=-Mi +

2_w

Wt
Mi +

.w

Wn

+ -=-A/n,

which is a linear function of the M’s. Hence on substituting in (107:4)

the partial derivatives dMo/dM\= W\/'Lw, dMo/dMi= Wt/1.w, etc.,

we get

(107:8) R

But since r? =c/wi, r} =c/viit etc., we have

R =
Wi W2

2c

( £W)* W l ( 2W)
2

C- + +
Wyi

( Ew) J

c

w»

V6 VC Vc
- ^=r~ V wi + wi + • •

• + wn = =- V 2^w - -7== •

2_,w 2-w v 2^w

Now if we take W; = 1 (» = 1, 2, • • n), we get V7=rj and therefore

v

which is formula (104:5).

On putting u»i = = • • • = u\ we get = r2= • • - =r„ by (104: 2).

Then (107: 8) reduces to

r
/? =—

>

which is formula (104:3).

108. The Two Fundamental Problems of Indirect Measurements.

The two main problems of indirect measurements are the following:

1. Given the p.e.’s of a number of directly measured quantities,

to find the p.e. of any function of these quantities.

2. Given a prescribed p.e. of the function to find the allowable

p.e.’s of the directly measured quantities.

The first of these problems is solved by substituting the data directly

in formula (107:4) or (107:5), according as the given p.e.’s are ab-

solute or relative.
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The second problem is mathematically indeterminate when the num-

ber of directly observed quantities is greater than one; For a function

of a single quantity, say

Q = fM.
we ha\e by (107:4)

dx

108a). The Method of Equal Effects. If, on the other hand, Q is a

function of several directly measured quantities, we obtain the definite

solution by using the method of equal effects ,
as explained in Art. 8.

This method assumes that all the components (directly measured

independent quantities) contribute the same amount to the reshltant

error in Q. Under these conditions all the terms under the radical in

(107 : 4) are equal to one another, so that

In some problems the p.e.’s of some of the components are so small

in comparison with the others that we may neglect them entirely

when applying the method of equal effects, thereby simplifying the

problem. Thus, if wye wished to find the local time at any place on the

earth’s surface, we could compute it from the formula

sin h
cos t = tan L tan d

cos L cos d

as soon as we knew the altitude (h

)

and declination (d) of a heavenly

body and the latitude (L ) of the place. The declination can be found

from the Nautical Almanac to a hundredth part of a second of arc, but

the altitude and latitude have to be measured at the place where the

local time is wanted. If these are measured with a sextant or an en-

gineers’ transit, they can not be measured much closer than to the

nearest minute of arc. Hence the declination is known so much more
accurately than the altitude and latitude can be measured that we may
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treat the declination as free from error, so that the error in / will be due
entirely to the errors in h and L. If, therefore, we desired the local time

to the nearest second, we would treat t as a function of h and L alone,

take w = 2, and find the allowable p.h.’s of h and li bv means of formu-

las (108:1).

To find out wrhether the error in any particular component has a

negligible effect in producing an error in the function Q we apply the

following criterion

:

108b). Criterion for Negligible Effects: If any component cjl has a

negligible effect in causing an error in Q, then we must have*

60 1

(108:2) —
<iqt i

where R is the stipulated p.f.. of Q. If several components q i, </2 , q,n

should each satisfy (108:2), they may all be neglected provided

4~

When applying the criteria (108:2) and (108:3) to any particular

problem, we are supposed to know in advance the size of the i\r ’s of

the components we contemplate neglecting, as in the rase of the declina-

tion d in the astronomical problem mentioned abo\e. If we know

nothing concerning the size of the p.k.'s whose effect we contemplate

neglecting, then the best we can do is to apply the method of equal

effects to the terms under the radical in (108:3), thereby obtaining

dQ
x/m—ry

dq 1

V
—ay
m—

r

2

dq*>

from which

n S
R

— dQ
3y/ m

dq 1

r, <
R

3v m
dq.

dO 1

\ * m— ) g — R ,

3

-dy
m
0qm

We may therefore neglect the effect of m components qu q<>< qm if

each satisfies the condition

(108 : 4) Tk ^
R

— dQ
3\/ m

dqk

( k ~
1 2, 3, m)

' See Palmer's Theory of Measurements
,
p. 151.
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The proofs of criteria (108:2) and (108:3) are simple and easy, but

they will not be given here.
1"

We shall now apply the preceding formulas to some examples.

Example 1. From the simple pendulum formula

we get.
7T*/

If /= 100 cm. and T—\ sec., find the error in g due to errors of 0.10 cm.

in l and 0.0020 sec. in T, respectively.

Solution. Differentiating g with respect to l and T separately, we have

dg ir* dg 2irH

dl
~

T* 6T~ T*

From this point onward we proceed in one of two ways, depending on

the meaning of the errors in l and T.

(a) If the errors in l and T are actual, definite errors of the magni-

tudes given, then we compute the error in g by the formula

Hence

dg dg
Ag = —A/ + —AT.

61 dT
[See (5:4)]

Ag
2tH

AT

9.8696(0.10 + 200 X 0.002) 4.935 cm./sec.* = 4.9, say.

Since we do not know the signs of AT and A/, we disregard the negative

sign on the right and take the arithmetic sum of the terms. This gives

the maximum numerical value of Ag.

(b) If the given values of l and T are the means of several measure-

ments and their given errors are the p.e.’s of these arithmetic means,

then we compute the p.e. of g by formula (107:4). Hence we have

/** 4ir4

R = y—W + = 9.8696v/0.01 + 0.16

9.8696 X 0.4123 = 4.068 cm./sec.* = 4.1, say.

* See Palmer’s Theory oj Measurements, p. 151.
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To find the relative and percentage errors under the two suppositions
(a) and (b), we have

(a)
_ , . Ag M AF 0.1
Relative error = — = 1- 2— = (-

g l T 100

2 (0 . 002)
_

= 0.001 + 0.004 = 0.005.

Percentage error = 100 (Ag/g) = 100X0.005 = 0;5 per cent.

(b) Since we are here dealing with a product of several quantities,

we use formula (107:7). Hence

R

g

= \/(0.001)* + 4(0.002)*

= 0.00412 = 0.004, say.

Percentage p.f.. = 100 (R/g) = 100X0.004 = 0.4 per cent.

Example 2. Two sides and the included angle of a triangle were
measured with the following results:

a = 252.52 ±0.06 feet,

b = 300.01 ±0.06 feet,

C = 42°13 ,00" ± 30".

Find the area of the triangle and its p.e.

Solution. The formula for the area is

Hence
A — \ab sin C.

dA 6sinC dA asinC dA ab cosC

2
’

db 2
’ dC 2

Since the errors given in this problem are the probable errors of the

given measurements, we should use formula (107:4). The use of that

formula in this example, however, would call for a considerable amount
of numerical work. To avoid this we calculate the relative error by
formula (107:5) and then get the p.e. from the relative error. Hence

we have (107:5)

R

~A
+ (AC cot O*.

The error in C must be expressed in radians. Hence

AC = 30 X
1

3600
0.0001454.
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Also cot C=cot 42° 13' = 1.1022.

A

// 0.06 V / 0.06 V
A/

l

) + (
) + (0.0001454 X 1.1022) 4

y V252.52/ V300.01/

0.00035.

The area is

252.52 X 300.01 X sin 42°13'

A = = 25452 sq. ft.

2

R = 0.00035 X A = 0.00035 X 25452 = 8.9 = 9, say.

The required result is therefore

A = 25452 ± 9 sq. ft.

Example 3. The distance between two inaccessible points A and B is

desired to ±0.1 foot. The required distance can not be measured

directly but must be calculated from the measurements of CA , CB, and

LACB. If a, b, and d (see Fig. 20) are approximately equal to 200 ft.,

150 ft., and 45°, respectively, find the allowable errors in these directly-

measured quantities.

A

Fig. 20

Solution. Here

and

c = y/

a

2 + b 2 — lab cos 6,

R = 0A.

The best way to solve this problem is by the method of equal effects,

and we therefore use formulas (108:1). Differentiating c with respect

to a, b, and 6 in turn, we have

dc a — b cos 6 dc b — a cos 6 dc ab sin 6

da c db c dO c
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But c = V40000+22500- 30000V2~= 141.7

dc 200 - 75i/2

da 141.7

dc 150 - 100\/2

db

~

141.7

dc
200 X 150 X -

dd 141.7

- = 0 . 66
,

<-r
7

141.7

= 0.060,
141.7

2 21213

~
141.7

and n = 3.

Then by (108:1) we have

0.1 0.1 0.1732
ra -

v'3
dc \/3 X 0.66 1.98

da

= 0.087 *= 0.09 ft.

0.1 0.1732
ru = — — = — “ 0.96 ft.

\/3 X 0.06 0.18

0.1 0.1732
re =

V;3 X 149.7 449.1
= 0.000386 rad. = 1'20".

The large allowable error in b is due to the fact that b is nearly per-

pendicular to c
y
so that a considerable change in the former has little

effect on the latter.

Example 4. The modulus of elasticity of a beam of length /, breadth

by and depth d, supported at the ends and loaded at the center by a

weight Wy is given by the formula

U Z
3

E
4abd*

where a is the deflection produced at the center. If it is desired to

measure £ to 1 per cent, and the error in W may be neglected, compute

the allowable errors in a, by d, and /.

Solution . The formula for E may be written

E = l\Vl9a~b~ ld~ 3
.

This is of the form (107:6), where K = W/4:. Then since R/E = l%
— 0.01, we have from 107:7)
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"- /<¥)'*SH>O'
Now using the method of equal effects, we have

/^/4 x 9
(y)

2

= o.oi, or 6
(y)

= o.oi.

AI 0.01 Al 1— =
) and 100— = — = 0.167 per cent.16 16

Likewise,

/ (Aa\ 2 Ao
|/4f —

J
= 0.01, or — = 0.005

Aa
100— = 0.5 per cent.

Ab
100— = 0.5 per cent.

b —
Ad 1

100— = — = 0.167 per cent.
d 6

Hence if the percentage p.e. of E is to be 1 per cent, the percentage

p.e.’s of a, b, d, l, must not exceed £, £, J, £ of one per cent, respec-

tively.

109. Rejection of Observations and Measurements. Occasionally

some individual measurement may differ so widely from the others of

the same set that we may suspect the discrepancy to be due to a mis-

take. In such a case it may be well to reject this measurement entirely.

To decide what to do about it we apply the following rule:

Find the mean of all the measurements (including the “wild" one) and

find the residual for each. Compute the p.k. of a single measurement by

formula (105:4). Reject any measurement whose residual exceeds 5 times

the p.b. of a single measurement.

This rule rests on the following considerations:

Suppose the chance of an 'error of magnitude * is 1 in 1000. Then

its probability is p= 1/1000 = 0.001. The chance that an error of this

size will not occur is therefore 1 —0.001 =0.999. From the probability

table we find the corresponding hx to be 2.326.

Now from Art. 101 we have

hr = p = 0.4769,
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from which

Hence

,
0.4769

h —
r

,
0.4769

hx = x = 2.326.
r

2.326
x r - 4.9r,

0.4769

to two figures.

The chance of making an error as great as five times the p.e. of a
single measurement is therefore less than one in a thousand. An error

of such a magnitude is therefore so improbable that we may safely

neglect it.

Example. A quantity M was measured with the results given below.
Should any of the measurements be rejected?

Jlf=236, 251, 249, 252, 248, 254, 246, 257, 243, 274.

Solution. The average of these measurements is

Mo = 251.

Hence the residuals are

»i = + IS, Vo = 0, va — + 2, Vi = — 1, c6 * + 3, t>t
= — 3, vj = + 5,

vg = — 6, Vs = + 8, t>io = — 23.

The p.e. of a single measurement is

= 0.6745|/
225 + 4+1 + 9 + 9 + 25 + 36 + 64 + 529

= 0.6745 X 10.01 = 6.75.

Five times this p.e. is 33.75, and since all the residuals are less than

this we retain all the measurements.

EXAMPLES ON CHAPTER XV

I. DIRECT MEASUREMENTS

1. Ten measurements of equal precision were made to determine

the density of a body, the results of the measurements being as follows:

9.662, 9.673, 9.664, 9.659, 9.677, 9 662, 9.663, 9.680, 9.645, 9.654.

Find the probable error of a single measurement, the most probable

value of the density, and its p.e.

2. Twelve measurements of an angle in a primary triangulation gave
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the following results. Find the p.e. of a single measurement, the most

probable value of the angle, and its p.e.

116 43' 44'. 45

50 .95

49 .20

47 .40

51 .05

50 .60

116 43' 51 '.75

52 .35

51 .05

49 .05

49 .25

49 .25

3. Ten measurements of the coefficient of expansion of dry air ga\e

the following results. Find the most probable value of the coefficient

and its p.e.

3.643X10-3

54

44

50

53

3.636XU)
51

43

43

45

4. A certain coefficient of expansion was measured with different

apparatus with the following results. Find the best value for the coef-

ficient and its p.e.

Measurement Weight Measurement Weight

0.0045 3 0.0036 2

0.0039 2 0.0026 2

0.0034 5 0.0027 1

0.0030 4 0 0043 3

5. An angle was measured several times with a transit and then

several times with a theodolite, with the following results:

Transit 36° 41' 28' ± 11"

Theodolite 36° 41' 23". 8 ±2 ".7

Find the most probable value of the angle and its p.e.

6. Six determinations of the velocity of light by different observers

at different times gave the following results, with their probable errors :

298000 + 1000

298500 ±1000
299930 ± 100

299990+ 200

300100 ±1000
299944 ± 50
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hud the most probable value obtainable from these determinations

an' 1 't' '’-i
7"

7. bind the best value of the atomic weight of silver and its p.e.

from the following determinations:

107.9401 ± 0.0058

107.9406 + 0.0049

,
107. 9233 ±0.0140

107.9371 ±0.0043

107.9270.: t». 0090

II. INDIRECT MEASUREMENTS

8. The side b and the angles B and (’of a plane triangle were meas-

ured with the following results:

b 106 + 1.06 ft . B - 2S'36’ - T, C = 120
o
12' i 1’.5.

lind the angle .1, the -ide a, and their

9. Two sides a and b and the included angle C of a town lot were
measured to be

a - 104. S6 s 0.02 ft, b — 214.24 + 0.03 ft.,

C = 47° 13' ± 1'.

Find the side r and its absolute and percentage error.

10. The index of refraction of prism is given by the formula

sin ltd + /))

sin ]a

If D — 28°34' ±0'.5 and a = 62°48 , + 0'.7
>
find n and its p.e.

11. The current in a tangent galvanometer is given by the formula

1 - K tan 6.

Find 7 and its p.e. when K = 1 .963 ±0.002 and 0 = 35° + O°.l.

12. The volume of a right circular cylinder is given by the formula

7T

1' = —d-h.
4

Find Fand its p.e. when h = 1 16.85 + 0.28 mm. and d = 82.54 ±0.28 mm

.

13. How accurately should the length and time of vibration of a

seconds pendulum be measured in order that the computed value of %

may be reliable to 0.05 per cent?

14. If in the formula
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the percentage error in R is not to exceed 0.3%, find the allowable

percentage errors in r and h when r= 48 mm. and h = 56 mm.
15. When the index of refraction of a liquid is determined by means

of a refractometer, the index n is given by the formula

n = y/N* — sin* 0.

If JV= 1.62200 ± 0.00004 and 5 = 38° approximately, find £t0 in order

that n may be reliable to 0.02 per cent.

16. The diameter of a rod was measured several times with the follow-

ing results:

1.034, 1.031, 1.029, 1.032, 1.034, 1.030, 1.034, 1.033, 1.032, 1.031.

Find the p.e. of a single measurement, the p.e. of the mean, the most

probable diameter of the rod, its cross sectional area, and the p.e. of

this area.

17. The area of the cross section of a rod is desired to 0.2 per cent.

How precisely should the diameter be measured?
18. The diameter of a polished steel rod was measured ten times with

the following results:

0.5003, 0.5002, 0.4999, 0.4998, 0.4999, 0.5003, 0.5001, 0.5004, 0.5001,

0.4999.

Find the cross sectional area and its p.e.

19. Explain how you would decide in any given problem whether to

use formula (5:4) or formula (107:4). What is the fundamental differ-

ence between these two formulas?



CHAPTER XVI

EMPIRICAL FORMULAS

UO. Introduction. An empirical formula, or empirical equation, is

one whoseform is inferred from the results of experiment or observation

and in which the constants are determined from experimental or ob-

servational data. Thus, it is known that the speed of a ship varies with

the horse power according to the formula

P = a + bV«.

The constants to be determined in this formula are a and b, and for the

purpose of determining them we should take several sets of readings

of the speed and corresponding horse power. These sets of simul-

taneous values of V and P would, when substituted in the given formula,

give several equations in the two unknowns a and b. The next thing to

be done would be to find the best values for a and b from the several

equations. For the solution of this part of the problem three methods

are available: the graphic method or method of selected points, the
method of averages, and the method of Least Squares. We shall now con-
sider these methods in the order named and illustrate each by several
examples.

111. The Graphic Method or Method of Selected Points. This
method can be used whenever the given formula can be plotted as a
straight line either directly or after a suitable transformation. The
equation given above, for example, can be reduced to a straight line

form by putting V* = t, thereby reducing the equation to the form

P = a + bl,

which is the linear in the variables t and P.

To apply the graphic method to this problem we plot on coordinate

paper the corresponding values of /(= V*) and P. The plotted points

should lie nearly on a straight line. We then draw a straight line which
will be a good compromise for all the plotted points and pass as near

as possible to each of them. The slope of this line will be the value of

b and its P-intercept will be o. If the line happens to pass through two
of the plotted points, or through any other two points whose co-

351
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ordinates are easily determined (points at the corners of squares, f ( ,r

instance), we can substitute their coordinates in the given equation

and solve the two resulting equations for a and b
} but the points so

used should be as far apart as possible. The drawing of the best repre-

sentative straight line is a matter of good judgment.

This method will give fairly good results when finely divided coor-

dinate paper is used, but in general it is not recommended except for

obtaining approximate values of the constants or in cases where the

results obtainable by the method are as accurate as the data used.

Example 1. The electrical resistance of a copper wire varies with the

temperature according to the equation

R = a + bT .

For the purpose of determining the constants a and b the measurements
of temperature and corresponding resistance given in the following

table wTere made. Find the values of a and b.

T 19.1 25.0 30 1
;

30 0
|

40.0
|

1

45.1
|

R 76.30 77.80 70 75

i

|

80 80
|

82 35
j

“
i

S3 0() ,

Solution . Plotting these pairs of values and drawing what seems to

be a good compromise liBe (Fig. 21), we find that this line passes through
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the points (21, 77) and (64, 89). Substituting in the given equation the
coordinates of these points, we have

o + 216 = 77

a + 646 - 89

436 = 12 6 = — = 0.2790,
43

and

a = 77 - 21 X 0.2790 = 71.14.

Hence the required relation between R and T is

R = ~\. 14 -f 0.27907\

To see how well this formula tits the data in the table we compute
the residuals of the several measurements. Writing

v = 0 . 2 790 T 4- 71.14 — R
,

we have

r, = 0.2790 X l‘M r 71.14 - 76.30 = 0.15

vs = 0.279(1 X 25.0 + 71.14 - 77. SO = 0 32

t'j = - 0.21

t'« = 0.39

= - 0.05

v* = -0.19

1’7 - - 0.01

12* = 0.40, = 0.36.

Example 2. The data in the following table fit a formula of the type

(111: 1) y = axn
.

Find the values of a and n and thence the required formula.

X 10 20 30 40 50 60 70 80

y 1.06 1.33 1.52 1.68 1.81 1.91 2.01 2.11
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Solution. Taking the logarithm of each side of the given equation,

we have

(111:2) log y = log a + n log *.

Putting

we get

where, a'= log a.

y' = log y, x' = log x,

y’ * log o + «*' * o! + »*',

This is the equation of a straight line in the new variables x ' and /.

To plot this line the most conveniently we use logarithmic paper.

Plotting the given points on such paper, we find that they lie almost

r

exactly on a straight line (Fig. 22). Hence we substitute in (111:2) the

coordinates of the first and last of the given points and get

log 1 .06 * log a + n,

log 2. 11 = log a + n log 80

;

or

n + log a = 0.0253,

1.9031» + log a - 0.3243.

/. 0.9031» = 0.2990,
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,r »- 0.3311.

Ha = 0.02Si-n

* 0.0253 - 0.3311

* 9.6942 - 10.

*\ a » 0.4945.

The required formula is therefore

y 0.4945 »».

Example 3 . Find a formula of the form

(111:3) y =

which will fit the data in the table below.

Solution. Taking the common logarithm of each side of the given
equation, we have

(111 : 4) log y = log k + mx log e = log k + (m log e)x
,

or

y' = log ^ + (m log where y' = log y.

This is the equation of a straight line in the variables x and y
f
. To plot

it we use semilogarithmic paper. Plotting the given values of x and y
on semilogarithmic paper, we find that the points lie nearly on a

straight line (Fig. 23). Drawing what seems to be a good representative

line, we notice that it passes through the points (0.4, 13) and (8.6, 140).

Substituting these values in (111:4), we have

log 13 = log k + 0.43429m(0.4) = log k + 0. 1737m,

log 140 = log k + 0.43429^(8.6) = log k + 3.7349m*

Solving these equations for m and k
,
we get

m = 0.2898,

k = 11.58.
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The required equation is therefore

y = 11 .58e°'tm*.

' Note. In logarithmic coordinate paper the origin is the point 1, 1).

Hence the equations of the axes are * * 1
, y * 1 . Putting x = 1 in the

equation y«=a*B, we get y-a. Hence in the straight-line graph of the

equation y =axn on logarithmic paper the constant a is the y-intercept.

To find a formula for the exponent n let (xi, yi) and (xit yf) be any

two pairs of corresponding values of * and y. Then from (111:2)

log ys = log a + » log xa ,

log yx - log a + « log x\.

or

log ys - log yi = «(log *, - log *0,

log y, - log yi
(111:5)

log X2
- log X,
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The origin of coordinates in semilogarithmic paper is the point (0, 1).

The equation of the y-axis is therefore x = 0, and that of the x-axis is

y-l. Putting * = 0 in (111:3), we gety = fc. Hence in the straight-line

graph of the equation y = *e m* on semilogarithmic paper the constant

k is the y-intercept.

To find a formula for the exponent w we substitute in (111:4) two
pairs of corresponding values of x and y, obtaining the two equations

log yt = log k + (m log c)x2 ,

logy! = log k -f (m log e)xi

.

1°8 yt — log yi = (*i — x i)m log e,

or

M log - log y, (log y 2 -W yi)
(111: 6) m = — = 2.302 6-

& yv
.

(**-*i)log* x2 - Xi

If the given points are so plotted that the equations of the axes are
not as stated above, the y-intercept will not be the value of the con-
stant a or k

.

For instance, in Example 2 we plotted the point (10, 1.06)

on the y-axis. This is really equivalent to making the substitution
10 x'

t so that the given equation is transformed into the equivalent
equation

y = fl(10a:
/

)
n = aXl0 n

jc'
n

.

Putting x f = 1, we get v =aX 10n = 0.4945 X 10° 3311 = 1.06, and this is the

actual plotted value of the y-intercept. The student should have no
difficulty in deciding whether or not the y-intercept of the plotted

straight line gives the true value of the coefficients a and k in any given

example.

112. The Method of Averages. The residuals of a series of plotted

points are the vertical distances of these points from the best repre-

sentative curve. Some of the residuals will be positive and others

negative. The method of averages assumes that the best representative

curve is that for which the algebraic sum of the residuals is zero. To
find the unknown constants in an empirical formula by this method we
first substitute in the given formula the several pairs of observed or

measured values of x and y. We thus get as many residuals as there are

pairs of observed values. Then we divide the residuals, or residual

equations, into as many groups as there are constants in the assumed

formula. Each group should contain as nearly as possible the same

number of residuals. By placing the sum of the residuals in the first

group equal to zero we get a single equation in the unknown constants.
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Placing the sum of the residuals in the second group equal to zero, we
get a second equation in the constants, and so on. Since the sum of the

residuals in each group is zero, the sum of all the residuals is necessarily'

zero. On solving simultaneously the equations obtained from the several

groups, we obtain the values of the unknown constants in the original

formula. A few examples will make the method clear.

Example 1. The data in the following table will fit a formula of the

type *

(1) y = a + bx + cx2
.

Find the formula.

87.5 84.0 77.8 63.7 46.7 36.9

292 283 270 235 197 181

Solution. Substituting in (1) the several pairs of corresponding values

of x and y, we get

I

II

III

a + 87.56+ 7656c — 292

a + 84.05 + 7056c - 283

a + 77.85 + 6053c - 270

a + 63.75 + 4058c - 235

a + 46.75 + 2181c- 197

a + 36.95 + 1362c - 181

Residual

equations

.

Dividing these equations into three groups (since there are three con-

stants to be determined), as indicated by the braces at the left, adding

the equations of each group, and placing the sums equal to zero, we

get the three equations

2a + 171.55+ 14712c - 575

2a + 141.55+ 10111c = 505

2a + 83.65 + 3543c - 378

Solving these three equations simultaneously for a, b, and c, we get

a - 111.7,5 *= 1.663, c - 0.00437.

Hence the required formula is

y - 111.7 + 1.663s + 0.00437**.
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This method of averages requires no graph and can be applied to any
formula which is linear (of the first degree) in the unknown constants
or to any formula which is reducible to a form linear in the constants.

Example 2. Solve Example 2, Art. Ill, by the method of averages.
Solution. Strictly speaking, the residuals are, by definition,

Vi = axi
B — yh v 2 = axt

n — yt, etc.

But if we divide these equations into groups, add, and attempt to solve

the resulting equations for a and n, we get into trouble at once; for the
unknown n occurs as an exponent in several terms of a sum.
We can avoid this trouble without much loss in accuracy by proceed-

ing as follows: Instead of equating to zero the sum of the residuals of

the y’s, we equate to zero the sum of the residuals of the logarithms of

the y’s. For any residual we have from (111:2)

v' — log a + n log x — log y.

Hence the several residuals are

v{ = log a + 1 . 0000m - 0.0253

v{ = !oga+ 1.3010n - 0.1239

vi = log a + 1.4771» - 0.1818

= logo + 1.6021rt - 0.2253

v£ = log.a + 1.6990« - 0.2577

®s
' = logff + 1.7782« - 0.2810

vi = log a + 1.8451» - 0.3032

{
v» = log a + 1.9031» - 0.3243.

In actual practice we do not write down these equations in this form,

but in the form given below:

log a 1 .0000m = 0.0253 log a f J.6090« = 0.2577

logo-1- 1 . 3010» = 0.1239 logo+ 1.7782n = 0.2810

log a -f 1.4771» = 0.1818 log a + 1.8451« = 0.3032

log a + 1 6021» = 0.2253 log a + 1.9031w *= 0.3243

(1) 4 log o + 5 . 3802* * 0.5563 (2) 4 log a + 7 . 2254n = 1 . 1662

.

Solving (1) and (2) simultaneously we get
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n = 0.3305, log a = - 0.3055 = 9.6945 - 10 a = 0.4949.

The required formula is therefore

y = 0. 4949 .v°
3305

.

Note . The method of averages is the shortest and easiest method for

finding the constants in an empirical formula, but it must not be used

blindly. The residual equations ran be grouped in several ways,* and

each different grouping will give different values for the unknown con-

stants, even though the algebraic sum of the residuals be zero in every

case. The resulting formulas will thus be different, and some of them
will fit the data much better than the others.

There is no way to determine in advance just what grouping will

give the best result. As a general rule the best formula is obtained by
grouping the residual equations in consecutive order, as was done in

Examples 1 and 2. The following example will serve to clear up the

matter of grouping.

Example 3. Find by the method of averages a formula of the type

y = a + bx*

which will fit the following data:

X 5
|

7 9
!

12

y 290 560 1044 1810 2300

* The number of possible groupings is given by the following formulas:

a) Two groups. The number of different ways in which p-\ q different things can be

divided into two groups of p things and q things, respectively, is

(p + q)'
m

p\q\

b) Three groups. The number of different ways in w hich p+g+r different things can

be divided into three groups of p things, q things, and r things, respectively, is

(P + q + r)l

p\q\r\~

c) Four or more groups. The number of wrays in which we can divide P+q+r+s
different things into four groups of p things, q things, r things, and s things, respectively,

(p 4- q + r 4- s) ?

.

p\q\r\s\

And so on for any other case.
r
For the proof of these formulas see Wentworth’s College

Algebra
, pp, 263-264; or Whitworth’s Choice and Chance

, pp. 63-64.
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Solution. The residual equations are

n = a + 1256 - 290

n = a + 3436 - 560

*» = a + 7296 - 1044

n = a + 13316 - 1810

n = a + 17286 - 2300.

The number of possible groupings of these equations is 5!/(3!2!) = 10.

The ten different groupings and the resulting formulas corresponding

to them are given below.

2 .

3.

C
{Vi

r 4

In

n
n
In

/n

y = 130.9 + 1.257a; 3
.

Zv = 0, Zv
* = 80.

y = 128.9 + 1.259a;3
.

Zv = 0
, Zvi = 26 .

y = 129.7 + 1.258a:3
.

2> = 0, Zv* = 74.

y = 158.9 + 1.224a;3
.

Zv - 0, Z** = 2054.

y - 135.9 + 1.251a;3
.

Zv - 0, Z»5 ^ 130.

5 .
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6 .

7.

8 .

9.

10 .

y = 253.7 + 1.113**.

x> = 0, X>* = 37676.

y = 137.6 + 1.249**.

X® = 0, X®2 = lM.

y = 123.9 + 1.2651**.

X® = X®2 = 176.

y = 123.9 + 1.2652**.

X* = °> X®2 = 176.

y = 142.2 + 1.244**.

X® = 0, X®2 = 420.

The best formulas are those for which X® 2
is least and are evidently

1, 2, 3. The poorest are 4 and 6.

The best formula obtainable is found by the method of Least Squares

to be

y = 130.8 + 1.257**

>

for which X®= 0 and X® 2 — 62.

A carefully constructed graph, obtained by putting ** = u and plotting

the straight line y —a-\-bu on a large sheet of finely squared paper, gave

y - 125 + 1.33**,

for which X® = 281, X®2 = 25397. This formula obtained from a good

graph is far inferior to nine of the ten formulas obtained by the method
of averages.
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When the number of residual equations is large enough to allow three

or more to each group, the method of averages can be depended upon
to give good results. If we have only a few sets of data (readings or
measurements) and can not easily obtain more wt* should always use
the method of Least Squares. This method give-; only one formula and
that is always the best possible one.

Every empirical formula, however obtained, should always be tested

by computing the residuals and seeing whether they are within allow-

able limits.

113. The Method of Least Squares. This method says that the best

representative curve is that for which the sum of the squares of the

residuals is a minimum. Since the squares of the residuals are positive

quantities, the requirement that their sum shall be as small as possible

insures that the numerical values of the residuals will be small
; and this

means that in the case of a series of plotted points the best represent-

ative curve will pass as closely as possible to all the points. Before

applying this method to empirical formulas we shall first derive a funda-

mental rule which reduces the method to a simple procedure.

For simplicity let us consider the formula

(113: 1) y = a + bx + cx2

and find the values of a, 6, and c which will make the graph of (113: 1)

pass as near as possible to each of the n points (xi, yd, (x2 , y2),
• • •

(*», Vn) I or, stated otherwise, let us find an equation of the form (113: 1)

which will be satisfied as nearly as possible by each of the n pairs of

observed values (X\ , yd, (x2 , y2),
* (*», yJ. The equation will not, in

general, be satisfied exactly by any of the n pairs. Substituting in

(113:1) each of the n pairs of values in turn, we get the following

residual equations :

v\ = a + bxi + cx i

2 - >'i,

Vi = a + bx2 + cx2
2 — y 2 ,

(113:2)

Vn =• a + bXn + CX 2 ~
.

The principle of least squares says that the best values of the lin*

known constants a, ft, and c are those which make the sum of the squares

of the residuals a minimum, or

£v2 * Vi
2 + Vi

2 + '
• + vf
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must be a minimum. Hence

Ylffl + lx + cx2 — y)
2 = (a + bx\ + cx? — yi )

2 + (fl + 6*2 + r*2
2 — y 2

)a

+ h (a + bxn + - yn)
2 = /(a, 6, c)

is to be a minimum.

The condition that /(a, 6, c) be a maximum or a minimum is that its

partial derivatives with respect to a, 6, and c shall each be zero. \\>

therefore have

df— = 2(a + + £*i
2 - yi) + 2 (a + + c*2

* - T 2) + • • = 0,
da

df— = 2 (fl 4- 6*1 + c*i
2 ~ yO*i + 2 (a + bx2 + cx? - y 2)x2 + • = (),

d6

df— = 2(a + bxi + £#i
2 ~ yi)*i

2 + 2 (a + 6*2+ £*2
2 - y2)*sp + *• = ().

dc

Dividing through by 2, we get the following three fiormal equations :

(113:3)

{a + 6*1 + r*i
2 - Vi) + (a + bx2 + cx? — y2)

+ * • + {a + bxn + cx 2 — yn) = 0
,

x\ {a + 6*1 + cx 1
2 - yi) + x2(a + bx2 + cx? - y2)

+ • •
• + *n(a + bxn + cx 2 - yn) = 0,

xi
2 (a + 6*1 + cx? - yO + x?{a + bx2 + cx? — y2)

+ •
* + x,?(a + bxn + cxn2 — yn ) = 0.

It will be observed that these normal equations can be written down
immediately by applying the following

Rule: To find the first normal equation multiply the right-hand mem-
ber of each residual equation by the coefficient of the first unknown in

that member, add the products thus obtained, and equate their sum to

zero; to get the second normal equation multiply the right-hand mem-
ber of each residual equation by the coefficient of the second unknown
in that member, add the products so obtained, and place their sum
equal to zero; and so on for the remaining normal equations.

The normal equations are solved by the ordinary methods of algebra

for solving simultaneous equations of the first degree in two or more

unknowns. It is usually best to solve by determinants when the coef-

ficients are large.

The number of normal equations is always the same as the number
of unknown constants to be determined, whereas the number of residual

equations is equal to the number of observations. The number of
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observations must always be greater than the number of • j
cons™* if the me,hod of lea.,, 8quares is t0

solution.
mine.

The rule stated above is applicable to any formula which is linear in
the constants or to any formula which can be reduced to a form linear
in the constants.

Example Find the equation of the straight line which comes
nearest to passing through the following points:

*
i

0 5 1 0
;

1 >
2 0

1 2 5 j

i

1

|

0 M
\

0 82
1 2<>

l

185
1

2.51 1

Solution. Let the equation of the line be

y — u + bx.

Substituting in this equation the several
Ret the following residual equations :

pairs of values of x and y, we

= a + 0.51) - 0.31

Vi = a + 6 - 0.82

®3 — a 1.5b — 1 . 29

vt = a + 26-1.85

»* = a + 2.5b - 2.51

»« = «+ 3b — 3 . 02

f Residual equations.

Adding the right-hand members and equating their sum to zero, we get

6a + 10.56 - 9.80 = 0.

Multiplying the right-hand member of the first residual equation by
0.5, the second by 1

,
the third by 1.5, etc., adding the products, and

equating their sum to zero, we get

10 5a -f- 22.756 - 21.945 = 0.

Hence the normal equations are

6a + 10.56 = 9.80 1

10.5a + 22.75b - 21 .945.1
N°n“1 eq',Mio”s -

Solving these by determinants, we have
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9.80

21.945

10.5

22.75 222.950 - 230.422

•

7.472

6 10.5 136.50 - 110.25 26.25

10.5 22.75

6 9.80

10.5 21.945 131.670 - 102.900 28.770

26.25 26.25 26.25

= 1 . 10, say

.

The required equation is therefore

y = - 0.285 + 1 . 10*.

[Chap. XVI

= - 0.285.

1.096

Computing the residuals by substituting the given points in this

formula, we have

Pi — — 0.045, Vt = — 0.005, va = 0.075,

Va = 0.065, va = — 0.045, p s = — 0.005.

X> = 0.04, = 0.014.

Example 2. Find a formula of the form

y = a + bx + cxi

which will fit the following data

:

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y 3.1950 3.2299 3.2532 3.2611 2.2516 3.2282 2.9759

Solution. Substituting in the assumed formula the corresponding

values of x and y as given in the table, we get

p, = a + 05 + 0c - 3.1950

Vi = a + 0.16 + 0.01c - 3.2299

Pa = a + 0.26 + 0.04c - 3.2532

Vi = a + 0.36 + 0.09c - 3.2611

- a + 0.46 + 0.16c - 3.2516

- a + 0.56 + 0.25c - 3.2282

»7 = a + 0.66 + 0.36c - 3.1807

»a * a + 0. 76 + 0.49c - 3. 1266

p. = a + 0.86 + 0.64c - 3.0594

Pio * a + 0.96 + 0.81c - 2.9759

Residual equations.
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Applying the rulfi of page 364 to these equations, we get

10<z + 4. 5ft + 2.85c = 31.7616 \

4.5a + 2.85ft + 2.025c = 14.0896 / Normal equations.

2 . 85a + 2 . 025ft + 1 . 5333c = 8 . 82881 )

Solving these for a, ft, c, we find

a - 3.1951,

ft = 0.44254,

c = - 0.76531.

Hence the required equation is

y = 3.1951 + 0. 44254* - 0,76531** .

If we compute the residuals by substituting in this formula the

values of x and y given in the table, we find

= 0.0001, = 0.0000549.

*

The following example is given to call attention to a pitfall against

which the computer should ever be o.n his guard.

Example 3. The indicated horse power, I, required to drive a ship

of displacement D tons at a ten-knot speed is given by the following

data. Find a formula of the form I =aDn which will fit the data.

D 1720 2300 3200 4100

I 655 789 1000 1164

Solution . We have

I = aDn
.

.*. log / = log a + n log D.

The residuals are really

•
t>i
— aD. n — h, vt = a/V — It, etc.,

but we save a great deal of labor and commit very little error by writing

v{ = log a -f « log Z?i - log h,

vi = log a + n log D, — log

etc.,
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and making the sum of the squares of the »''sa mininfum. Substituting

in these equations the corresponding values of D and I, we get

v{ = logtf + 3.236« - 2.816

v{ = log a -f- 3.362m — 2.897
> Residual equations.

= log a + 3 . 505?/ — 3 . 000

Vt = log a + 3.613m — 3.066

Since these equations are linear in the constants n and log a, we can

apply the rule stated on page 364. Adding the right-hand members and
equating their sum to zero, we find the first normal equation to be

4 log a + 13.716m = 11.779.

Multiplying the right-hand member of the first residual equation by

3.236, the second by 3.362, etc., adding the products, and equating

their sum to zero, we get

13.716 log a + 47.11m = 40.445

for the second normal equation. Rounding off these numbers to four

figures, we have

47.11m + 13.72 log a = 40.44)
> Normal equations.

13.72m + 4 log a = 11.78 )

Solving these equations by determinants, we have

40.44 13.72

11.78 4 161.76 - 161.62 0.14
m = = = 0. 700,

47.11 13.72 188.44 - 188.24 0.20

13.72 4

47.11 40.44

13.72 11.78 554.96 - 554.84 0.12 .

log a = = = = O.600.
0.20 0.20 0.20

/. a = 3.981.

The resulting formula is therefore

I = 3.98Z)0 -700
.
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Computing the residuals by substituting the data in this formula,

we get

Vi = — 77, r2 = — 108, v3 = — 131, v4 = — 182.

Hence

]>> = 67,878.

The formula which we have found is evidently so poor as to be worth-

less; for the residuals are large, all of the same sign, and the sum of their

squares is exceedingly large. The correct formula is known to be

I = 4.56Z?*'*,

for which the residuals are

»i = — 0.6, = 5.4, t>3 = — 9.1, »« = 4.7;

and therefore „
£>* = 134.4.

The poor result obtained above is due primarily to the fact that in the

process of solving the normal equations three of the most important

significant figures disappeared, by subtraction (see Art. 6) ; for n and log a

were determined from the simple fractions 0.14/0.20 and 0.12/0.20, re-

spectively, in each of which the second figure in both numerator and

denominator is doubtful. This loss of significant figures did not seriously

affect n, but in the case of a the effect was disastrous. The reason for

the greater effect on a is this : An error e in log N will cause an error

2.3026 Nt in the antilog (Art. 6).

The only way in which we can hope to get the required constants

correct to four significant figures in this example is to solve the problem

anew and carry all computations to eight significant figures, so that we

shall have five left after the first three disappear by subtraction. We
therefore make a new computation, using 7-place logs. The results are

as follows:

161.55494 - 161.77315 _ 0.21821

188.10644 - 188.43257
~

0.32613

554.68739 - 554.89978 _ 0.21239

- 0.32613
~

0.32613

0.6691,

0.65725.

and
/. a - 4.4797 = 4.480, say.

Hence tne final formula is

I = 4.480Z70Wl .
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The residuals are found to be

and

t>i
= — 0.1, Vt = 6.4, »s = — 7.8, Vt = 7.1;

= 152.2.

Note. This example serves to bring out an important point which

must be kept in mind when determining the constants in empirical

formulas. The point is this: The data used in determining the con-

stants should be treated as exact numbers, and the computer must be

careful about rounding off and dropping seemingly superflous digits at

any stage of the computation. The final values of the constants should

be given to as many significant figures as are given in the original data.

When it happens that some of the most important significant figures

disappear by subtraction, as in the example above, the computation

must be carried through with enough significant figures at all stages to

give a reliable result. As a general rule it may be stated that if the

constants are desired to m significant figures and if a preliminary calcu-

lation shows that the first p figures will disappear by subtraction, the

calculation must be performed with m+/>+ 1 significant figures through-

out from beginning to end.

114. Weighted Residuals. It sometimes happens that the residuals

are not all of the same weight. This is the case when we use the re-

siduals of a.function of y instead of those of y itself. In Ex. 2, Art. Ill,

and Ex. 3, Art. 113, for example, we found it necessary to use the re-

siduals of log y instead of those of y. In these cases the residuals were

no longer of equal weight, as we shall now show.

Using the notation of Art. 107, let

Then
Q=/O0-

dQ

dy
-/'GO.

Substituting this in (107:4), we get

R - f(y)r,

where r denotes the p. e. of y and R the p. e. of f(y). Hence

R

r
-/'GO.
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Since the same relations hold between residuals as between probable
errors, we may write

— L
r v

where v and V denote the residuals of y and /(y), respectively. Hence

V — = Ay)-
V

Denoting by ww and w/ the weights of y and f(y), respectively, we
have from (104:2)

1

(114:1)

W/ r2 v2

F„
=
F

=
V2

~
]/'(y)J*

Wy
Wf —

Wy) J
1

Now if f(y) = logi 0 y —M log, y, where M = 0.43429, we have

Hence from (114:1)

Ay) = -
y

•Wf —
yhvt

IF’

and if all the y ’s are of equal weight, then wv
= 1 and we have

(114 : 2) Wf = M 2

We shall next derive the fundamental rule for writing down the

normal equations when the residuals have different weights.

By Art. 94 the best result obtainable from measurements of unequal

weight is that for which the sum of the weighted squares of the residu-

als is a minimum. Hence we must have

vWi* + + • •
* + a minimum -

In the case of the equation y “a+ix+c** (Art. 113) we therefore have

,a»i(a + bxi + f*i* — yO* + wt(a + bxt + cxf — y*)* -f • • • a minimum.

Calling this expression /(a, b, c), taking the partial derivatives with

respect to a, b, c in turn, and equating each to zero, we have
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df— = 2 w\(a + bx i + c.ri
2 — yi) + 2w 2 (tf + bx

%

-f- cx? — y?) + • • • = 0,
da

dl
db

= 2wiX\(a + bx 1 + cx

?

— y\) + 211)2X2(0 + bx2 + cx? — y2)
-(-••= 0,

df— = 2w^x? (a + bx 1 + cx 1

2 — V\) + 2w2x? (a + bx2 4* ££2* “ 3*2) 4* • * = 0.
dc

Hence*on dividing through by 2 we get

Wi(a + bxi + c*i2 — y x) + w2(a + bx2 + cx? — 3^)

+ * *
* + Wn(a + bxn + cx? — yn) = 0

WiXi(a + bx 1 + cx? — >’i) + w2X2(a + bx 2 + ca: 2
2 — y 2)

+ • •
• + wn xn(a + bxn + cxn2 — yn)

= 0

WiX?(a + bx 1 + 6*i
2 — yi) + w2x?(a + bx2 + cx? — y 2)

+ • •
* + wnx?(a + bxn + cx? - yn) = 0

Weighted
normal

equations.

In the case of weighted residuals we can therefore write down the

normal equations according to the following

Rule: To get the first normal equation multiply the right-hand side

of each residual equation by its weight and by the coefficient of the

first unknown in that equation, add the products thus obtained, and

equate their sum to zero; to find the second normal equation multiply

the right-hand member of each residual equation by its weight and by
the coefficient of the second unknown in that member, add the products,

and equate their sum to zero; and so on for the others.

We shall now work Ex. 3 of the preceding article by the method of

weights. The weights of the residuals are I?/M2
,
I?/M2

t
I?/M2

, and
I?/M2

\ but since the factor \/M 2 will divide out in the normal equa-

tions we do not write it down at all. The solution given below should be

self-explanatory.

/ = aDu
.

.*. log / = log a + n log Z>.

D 1720 2300 3200 4100

I 655 789 1000 1164

/* 429025 622521 1000000 1354896
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»i = log a + 3.2355284k - 2.8162413

vt = logo + 3.3617278* - 2.8970770

v3 = log o + 3. 5051500k - 3.0000000

Vt = log a + 3.6127839n - 3.0659530

Weights

429025

622521

1000000

1354896

Residual

equations.

Now applying the rule for writing down the weighted normal equa-
tions, we find them to be

11880965.2k + 3406442 log a = 10165776.61 Weighted normal

41497013.1k + 1 1880965. 2 log a = 35495260.6/ equations.

Solving these by determinants, we find

» = 0.6671, a = 4.546.

The required formula is therefore

/ = 4 . 546T? 0 -*671
.

The residuals are found to be

Vi = — 0.3, t'2 =5.8, i'i
= — 9.4, Vi — 4.8.

£*' = 0.9, =145.1.

The value of is now much less than in the previous solution, but

TV is only slightly less. The formula obtained by the method of

weighted residuals thus fits the data slightly better than the one de-

rived by leaving weights out of consideration, but the improvement is

not marked. After applying this weighting method to several simple

examples of different types and comparing the results with those ob-

tained by ignoring differences in weight, the author is of the opinion

that ordinarily it is not worth while to bother about the weights of the

residuals; but problems sometimes arise in which the weights must be

considered. *

Remark . Since the weights in the preceding example are approxi-

mately as the numbers 43, 62, 100, and 135, the student may wonder
why it is not sufficient to multiply the residuals by these smaller num-
bers instead of by the actual weights 429025, 622521, etc. The answer

is that if we did this the corresponding products would be true to only

two or three significant figures and these would disappear in this prob-

* For a striking example of the effect of weighting in some problems see an im-

portant paper by C. E. Van Orstrand: “On the Empirical Representation of Certain

Production Curves, " Journal ofthe Washington Academy of Sciences}
\o\. 15(1925), No. 2.
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Iem by subtraction in solving the normal equations, so that the results

found would be very uncertain. We can state as a general rule that the

number of significant figures used in the weights must not be less than

the number of significant figures which are to be retained throughout

the computation, unless the exact values of the weights happen to-con-

tain fewer figures than the number retained throughout the compu-
tation.

115. Non-Linear Formulas.—The General Case. Not all empirical

formulas can be handled by the methods thus far considered. For ex-

ample, the relation^between the pressure p and temperature t of satu-

rated steam can be expressed by a formula of the type

p = aClO) 4"^'),

where a, b, c, are unknown constants. These constants do not enter the

formula linearly, and no transformation of the formula will give a linear

relation among them. Consequently they can not be determined by
the methods previously given. We are now going to develop a method
which will apply to any type of formula, however complicated it may
be.

Let us consider a formula involving two variables, x and y, and three

undetermined constants, a, b, c. Such a formula may be written in the

symbolic form

(115:1) y = /(*, a, b, c)

.

Let ao, bo, c0 be approximate values of a, b, c, obtained from a graph

or by any other means, and let a, 0, y denote corrections which are to

be applied to ao, bo, Co, respectively, so that

/ a * ao + a,

(115: 2) \ b = bo + j8,

Then
c = Co + y •

(115: 3) y' * f(x, a0,
b0,

c0)

will be a function whose graph approximates the graph of (115 : 1) more

or less closely. The values of this approximating function corresponding

to xi, x», • • • x» will be

yi “ /(* i» °o, bo, co),

yi */(*», «o, bo, co),
,

yi - /(*», ao, b0, Co)

.
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If we take (115:1) to be the best or most probable function and its

graph to be the best representative curve, then the residuals will be

(115:5)

= /(* i, a, b, c) - y\

Vi = /(* 2 ,
a, b, c) - y3

<

i

l*n = /(*«, a, b, c) - yn ,

where yu yt, • • y» are the observed y's corresponding to * lt Xt, • xn ,

respectively. Substituting in (115:5) the values of a, b, c as given by

(115:2), we have for the first residual

#i = /(xi, a 0 + a, to + j3, + 7) — ?i,

or

(115:6) , tfi + yi = f(xi, a 0 + a, b0 + P, c0 + y).

Considering the right-hand member of (115:6) as a function of

a, b, c and expanding it by Taylor's theorem for a function of several

variables, we have

(115: 7) + Vi = f(x i, «o, b0 ,
c^Y

where (d/i/3a) 0 means

+ «

,
etc.

X= Xi
a = flo

b= bo
C=Co

Then since y\ =f(x i, ao, bo, eo), (115:7) becomes

or

Let

= y{ — yh r* = yi — yt,
• r„ - y» y*-

Then the residuals become
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(115:8)

These equations are linear (of the first degree) in the corrections

a,
j
8

, 7 ,
and we may therefore deal with the problem from this point

onward either by the method of averages or by the method of least

squares. If we use the latter method, we write down the normal equa-

tions by the rule stated on page 364.

The quantities ru r2 ,
• • rn are the residuals for the approximation

curve y'=f(x, ao,&o,£o), since they are the differences between the ob-

served ordinates and the ordinates to this curve.

We shall now apply this general method to two examples.

Example 1 . Find a formula of the form

y — mx + b

which will fit the following data:

Residual

equations

.

X 27 33 40 55 68

y 109.9 112.0 114.7 120.1 125.0

Solution . When these values are plotted on ordinary coordinate

paper, the points are found to lie nearly on a straight line (Fig. 24).

The line which seems (to the eye) to fit them best has a slope of 0.37

and a y-intercept of 99.7. Hence we take

mo = 0.37, bo = 99.7.

The approximation curve is therefore the line

y = 0.37* + 99.7.

Substituting in this equation the observed values of x f we get

y{ - 0.37 X 27 + 99.7 - 109.7,

yi = 0.37 X 33 + 99.7 * 111.9,

yi « 11,4-7, yi = 120.0, yi *124.9,
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ri = 109.7 - 109.9 = - 0.2,

r2 = 111.9 - 112.0 = - 0.1,

71 * 0.0, T\ = — 0.1, fj = — 0.1.
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Substituting in (115 : 8) these values of the r’s and partial derivatives,

we get

- 27a + /S - 0.2

(i = 33a f ]9 — 0.1

vs = 40a + p + 0.0

v< = 55a + /3 — 0.

1

Residual

equations.

= 68a + /3 — 0.1

We shall complete the problem by finding the best values of a and /3

by the method of least squares. Forming the normal equations ac-

cording to the rule on page 364, we get

11068a + 223/5 = 21.01 Nonnal

223a + 5/3= 0.5 )
equations.

Solving these fora and /9, we find

a = - 0.0012, /3 = 0.152.

Hence
m = 0.37 - 0.0012 = 0.3688,

b = 99.7 + 0.15 = 99.85.

The required formula is therefore

y = 0.3688a; + 99.85.

Example 2. Find more accurate values for the constants o, b, c, in

the formula

p = o(10) t</(e+,)
,

given the approximate values

«o = 4.53, bo =7.45, Co — 234.7.

Solution : For the partial derivatives (dp/da) o, (dp/db) o, (dp/dc) o we
have

(—

)

= (l0) b»t«'>+ l\(—\ = 0O(lO)
fc
»
</(e*+o— log. 10,

\da/ o \db/ o Go + t

(t) “ - «o(10)».»'<‘.+‘>
— - log. 10.

\dc/o (co + 0*
Also

pi = 0O(1O)‘.*> pi = 0O(lO)‘*‘*'
(e*+‘* )

,
etc.;

and
ri
= pi ~ Pu r* = p{ — Pt ,

etc.
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In the following table are given the observed values of t and p, the

corresponding values of the partial derivatives, and the corresponding

r's.

No. t
a c B ©. (*)

\SbJo 6).

r Group

1 0.672 -0.161 +0.005 +0.095
2 9 0.763 -0.124 +0.005 +0.007
3 0.00 4.52 1.000 0.000 +0.005
4 8.01 7.93 1.761 —0 .018 +0.049 I

5 11.98 9.88 2.300 1.165 -0.035 +0.541
6 16.82 13.52 3.149 2.196 -0.064 +0.746
7 23.85 22.24 4.867 4.681 -0.136 -0.194

8 35.95 43.96 9.763 13.523 -0.37% +0.265
9 44.90mm 15.717 26.326 -0.726 —0.002

10 52.12 EIeII 22.583 42.806 -1.112 +0.903
11 58.68 139.72 64.490 -1.636 +0.893 11

12 74.47 281.55 62.300 156.520 -3.723 +0.649
13 78.83 73.152 190.924 -4.543 + 1.248

14 82.25 387.56 85.765 232.136 -5.455 + 1.365

15 86.21 453.31 100.319 281.098 -6.528 +3.807
16 91.34 122.213 357.103 +0.592
17 93.66 602.53 133.354 396.752 -9.003 +2.314
18 99.39 743.49 164.564 510.637 -11.381 +1.916 III

19 100.87 784.07 173.547 544.065 -12.079 +6.439
20 104.64 895.83 198.293 637.758 -13.999 -3.435

Denoting the corrections to a, b, c by a, f}, y, respectively, and

substituting in (115: 8 ) the values of the r’s and partial derivatives

given in the table, we get 20 residual equations for determining a,
/
8

, y.

In this problem we are going to use the method of averages; so it is

not necessary to write down the residual equations. We simply divide

the coefficients into three groups, as indicated in the table, and add the

coefficients in each group. We thus get the following three equations:

/ 14. 512a + 8.362/3 - 0.2437=- 1.249,

<300. 190a + 726.725/8 - 17.5687 =- 5.321,

*892. 290a + 2727.413/3 - 61.1507 = - 11.633.

Solving these equations for a, /3, 7', we get

a = - 0.131, /5 = — 0.0603, 7 - - 4.437,

so that the corrected values of the constants are
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o = 4.53 - 0.131 = 4.399,

b = 7.45 - 0.0603 = 7.390,

c = 234.70 - 4.44 = 230.26.

The final equation is therefore

ft
= 4.399(lO)7M0t/ <M0 *t+ l >.

116 . Determination of the Constants when Both Variables are

Subject to Error. In Arts. 112-115 it was tacitly assumed that the

given values of the independent variable were absolutely correct and
free from all error; the values of the function alone were supposed to

be subject to error. This assumption is legitimate in most cases, for it

is usually po&ible and practicable to obtain the values of one variable

more accurately than the other.

If both variabldt are subject to errors of the same order of magnitude,

the problem of finding the best values of the empirical constants is

more complicated and has never been solved except for those cases in

which the data can be plotted as a straight-line graph, either directly

or after a suitable change of one or both variables. This special case for

straight-line formulas was first solved by Mansfield Merriman,* but

the most general and complete solution has been given by H. S.

Uhler.f In the present article we shall treat only the simple case in

which both variables are of equal weight. This is sufficient for most

problems; for, as was seen in Art. 114, it is not often necessary to take

account of differences in weight. When differences in weight must be

considered, the reader is referred to Uhler’s paper for the proper

formulas to use.

Let us consider n pairs of values (*i, y0, (x2 , y2),
• •

• (x„, y»), and

let these be plotted as points on a straight-line graph. The line which

best fits these points will evidently be that for which the sum of the

squares of the perpendicular distances from the points to it is a mini-

mum. The equation of any straight line may be written in the form

(116: 1) ax + by + 1 = 0,

this symmetrical form being used because both x and y are equally

subject to error. The perpendicular distance from any point (x', y')

to the line (116: 1) is given by the formula

(116: 2)

ax' + b? + 1

v^+T*
* Report of the U. S. Coast and Geodetic Survey, 1890, p. 687.

t “Method of Least Squares and Curve Fitting," Journal of the Optical Society oj

America and Review of Scientific Instruments. Vol. 7 (1923), pp- 1043-1066.
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The sum of the squares of the perpendicular distances from the points

(*i» yi)* (*2 , yz), etc. to the line (116: 1) is therefore

(116: 3) F(

a

,
b) = d2 =

[(0*1 byi -f- l) 2

a2 + b 2

+ (a* 2 + by% + l) 2 + • •
• + (axn + byn + 1)*].

Since this is to be a minimum, its partial derivatives with respect to

a and b must each be zero.

Taking the partial derivative of (116: 3) with respect to a, we have

dF 2 a

Ta~- 7^7W lI(“' + by' + 1)1 + + by' + ,)
'

+ * *
• + (fl*n + byn 4- l) 2

]

2 .

H———[* 1 ( 0*1 + by i + 1) + *2 (0*2 + by2 + 1)
a 2 + b 2

+ * •
* + xn(axn + byn +1)].

Expanding the terms within the brackets, reducing to a common
denominator, and collecting terms, we get

(116: 4) = -_L— [W’ - <.*) £*y + (*
2 - «*) E*

da (<r + b2r

+ ai J(E*2 — £y2
)
~ 2o* Ey ~ an ]•

Likewise, by symmetry,

dF 2

( 116: 5) IT
=

7 ~ E*y + (a2 - &2) Ey
do (a 4

- + b*r

-f fl
2i(Ey2 — E*2

)
— 2a& E* — 6»].

Multiplying (116: 4) by a, (116: 5) by £, adding the results, and

simplifying, we get

dF dF 2 . _
,
_

,

.

(116:6) a h A— = r—rj fl E* + b Ey + *]
da do a2 + ft

2

But since dF/da = 0 and dF/d£> = 0 for a minimum, (116:6) reduces to

a £* -f- i Ey "k n ~ Of

or

(116 : 7 ) ‘('T
:

)
+ *('

i
r) +1 ' 0,
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which shows that equation (116: 1) is satisfied by the values

n

£y
= y-

In other words, the best representative line always passes through the

centroid of the given points.

Since dF/da and dF/db must be zero for a minimum, we have from

(116: 4) and (116:5), respectively,

(116: 8) b(b* - a2
) 5>y + (6* - a2

)
~ 2ab £y

+ ^(Z*2 — £y*) — an = 0,

(116: 9) a(a2 — 62
) 52XV + (

fll ~ 62) Zy — 2ai Zx

— a26(52*2 — Zy2
)
— bn = 0.

Problems of the type treated in this article are to be solved by
means of formulas (116: 7) and (116: 8) or (116: 7) and (116: 9), always

using (116: 7) first. We shall apply this method to Example 1 of Art.

113.

Example.

1

X y xy X* yt

0.5 0.31 0.155 0.25 0.0961

1.0 0.82 0.820 1.00 0.6724

1.5 1.29 1.935 2.25 1.6641

2.0 1.85 3.700 4.00 3.4225

2.5 2.51 6.275 6.25 6.3001

3.0 3.02
i

9.060 9.00 9.1204

Sums 10.5 MEM 21.945 22.75 21.2756

To facilitate the computation the several known quantities are ar-

ranged in tabular form as shown above.

Since

5> _ 10.5

» 6
1.75,

52y _ 4.90

n 6 3

we have by (116: 7)

4.90
1.75a •+• 6+1 = 0,

3
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or
5.25a + 3

b
4.9

Substituting this value of b in (116: 9) and reducing, we get

5.7187a’ + 23.4548a’ + 6.165a = 0.

Solving for a, we find

a = 0, - 3.8191, - 0.28227.

The corresponding values of b are found from the equation

6= - (5.25a +3)/4.9 to be

b =- 0.61224, 3.4796, - 0.30981.

Since the slope of the line (116: 1) is —a/b, it is obvious that the

values a= — 3.8191, 6 = 3.4796 are the only ones which will fit the

data of this example. The required line is therefore

- 3.8191* + 3.4796y +1 = 0,

or

3.819* - 3 . 480y = 1,

or

y = - 0.2874 + 1.097*.

This last equation agrees closely with that found by the ordinary

method in Art. 113.

if we compute the sum of the squares of the perpendicular distances

from the several points to this line, we find

= 0.00618.

For the line found in Ex. 1, Art. 113, wre find

= 0.00619.

the two results are thus practically identical.

Remark. The reader will observe that the determination of the

best representative line by the method of the present article involves

but little, if any, more labor than the ordinary method of Art. 113.

117. Finding the Best Type of Formula. There exists no general

method for finding the best type of formula to fit any given set of data.

Probably the best one can do is to proceed as follows

:

/l Plot the data on rectangular coordinate paper, taking care to

choose the proper scales along the two axes so as to make the graph

show up to the best advantage.
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2. If the graph is a straight line, or nearly so, assume a formula of

the type

y = a + bx.

3. If the graph is not a straight line but is a fairly smooth curve

without sharp turns or bends, it is likely that the data can be fitted by
some one of the following formulas

:

Remarks and Suggestions .

(a) y = o + bx + cx* + dx*. Linear in the constants.

(b)
b

y = a-f
V Linear in constants. Put l/x = /

(c)

Jtf

1 1

y = > or = a + bx.
a + bx y

to plot.

Put l/;y = m and plot the straight

line u—a+bx.
(d) y

2 = a + bx + cx* + dx2
. Linear in constants.

(e)
9k

HII or log y = log a+x log b.

(f) H
~

II
5N or log y = log a+bx log e .

(g) log y = a + bx + cx1
. Linear in constants.

(h)
X

y 7

a + bx + cx2

or

— = a + bx + cx2
.

y
Linear in constants.

(0 y = axn
, or log y = log a+n log x .

(j) y = axn + b. Use general method of Art. 115.

00 y = ac hx + c. u u u u

0)
X

y =
,

. +c.
a + bx

u a u a a u

(m) y = os1* + cs-*. u u u u u u

(n) y * ax’ + a u u u a u

4. As aids in determining which of the formulas (a)-(n) to use in

any given problem, the following suggestions are offered

:

(a) If the observed data give a straight-line graph when plotted on

logarithmic paper, use the formula

y — ax*.
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(b) If the data give a straight line when plotted on jemilogarithmic
paper, the proper formula is

y = aebz
,

or y = abz
.

(c) If the points (1/x, y) or (jc, \/y) lie on a straight line when plotted

on ordinary coordinate paper, the proper formula is y = a-{-b/x in the
first case and y — \/{a+bx) or \/y -a-\-bx in the second case.

5. The polynomial formula

y — a + bx + c*s+ dx*-\- • •
• + gxn

can be used to fit any set of data by taking a sufficient number of terms.

•The requisite number of terms is given by the following

Theorem: If the values of x are in arithmetic progression and the nth

differences of the y's are constant, the last term in the required polynomial

is xn
.

This theorem is simply a corollary of the theorem proved in Art. 14.

For example, the third differences in the following data are nearly

constant; so the required polynomial is

y = a + bx + cx2 + dx 3
.

X y Aiy Aty Asy

0 0

0,1 HESS 0.212

0.2 0.251

0.3 0.772 0.019

0.4 1.153 0.381 0.072 0.014

0.5 1.625 0.472 0.091

0.6 0.582 0.110 0.019

0.7 2.917 0.128 0.018

0.8 3.776 0.859 0.149 0.021

0.9 4.798 0.163 0.014

1.0 1.203 0.181 0.018

This theorem applies only when the *’s are taken at equal intervals

apart. It rarely pays to take more than three or four terms in a poly-

nomial formula, on account of the labor involved in determining the

constants.

EXAMPLES ON CHAPTER XVI

1. Find by the method of averages a formula of the form y—axn

which will fit the following data:
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X 273 283 288 293 313 333 353 373

y 29.4 33.3 35.2 37.2 45.8 55.2 65.6 77.3

2. Plot on logarithmic paper the data of the above example and find

a and n graphically or from selected points.

3. Find by the method of least squares a formula of the form

y^a+bx* which will fit the following data:

X 19 25 31 38 44

y 1900 3230 4900 7330 9780

4.

The data in the following table can be fitted by a formula of the

type y=axn
. Find the formula by the method of averages.

X 53.92 26.36 14.00 6.992 4.280 2.748 1.853

y 6.86 14.70 28.83 60.40 101.9 163.3 250.3

5.

The data given below can be fitted by an exponential formula

of the type y = aebx
. Plot the data on semilogarithmic paper and find

values for a and b.

X 2 5 8 11 14 17 27 31 35 44

y 94.8 89.7 81.3 74.9 68.7 64.0 49.3 44.0 39.1 31.6

6. Solve the preceding example by the method of averages.

7. Find by the method of least squares a formula of the type

y^a+bx* which will fit the following data:

X 7.87 11.50 16.40 22.60 32.80

y 0.2 0.4 0.8 1.6 3.2

8.

The data in the table below can be fitted by a formula of the type

x/y=a+bx. Find the formula by the method of averages.

X 1 3.8
L KQD 11.3 17.5 31.5 45.0 64.0 95.0

y m 12.5 13.5 14.0 15.0 16.0 16.5 17.0 17.5
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9. Work the preceding example by plotting the points (x, x/y) on
ordinary coordinate paper and finding the values of a and b.

Hint : Put x/y = u. Then the equation becomes u—a+bx, the graph

of which is a straight-line.

10. In Example 3 put xi = t and plot the equation y = a+bt. Find
from the graph the approximate values of a and b and then find cor-

rections to these values by the general method of Art. 115.

11. The data in the table below can be fitted by a formula of the form

y = a+b/(x+ c). Approximate values for a, b, and c are Co = 0.18,

bo— —0.13, Co — —0.50. Find corrections to these values.

X 0.65 0.87 m 0.90 0.93 1.16 1.80 2.12 3.00

y 0.129 0.217 0.275m 0.400m 0.435

12.

Find by the method of averages a polynomial formula which will

fit the data in the following table:

X 8.5 9.5 12.5 13.5 14.5 15.5
1

16.5 17.5

y 1260 1660 2150 4730 6050 13050

13.

The data in the table below are to be fitted by a formula having

y = 20 as an asymptote Find the formula by any method.

X B 1 Kg|

3 B 5 6 fl 8 B 10

y 84.9 67.2 64.3 61.9 59.9 57.4 55.6 53.4

14.

The table below gives the atmospheric refraction for a star at

various altitudes above the horizon. Assume that R"

—

a/ (6 tan h),

omit the first and last values in the table, and find a and b by the method

of least squares.

h
o

© 2° 4° 6° 8° 10° 20° 40° 60°

R 34'50" 18'06" H'37" 8'23" 6'29" 5'16" 2'37" 1'09" 0'33" 0



CHAPTER XVII

HARMONIC ANALYSIS OF EMPIRICAL FUNCTIONS

118. Introduction. Any periodic function can be represented by a
trigonometric series of the form

(118: 1) y = ao + a\ cos x + a 2 cos 2x + • •
• + a» cos nx

+ b\ sin x + b 2 sin 2x + *
• + bn sin nx.

This function is periodic and has the period 2ir. A periodic function

having a period different from 2ir can be reduced to the form (118: 1 )

by a suitable change of the independent variable (Art. 1 2

1

>

.

When we wish to find an empirical formula to represent a phe-

nomenon that is known to be periodic—such, for example, as the tides,

alternating currents and voltages, mean monthly temperatures, etc.—

,

we should always assume a formula of the type (118:1). If the values

of the function are known for certain equidistant values of the in-

dependent variable—from readings of an instrument, measurements
of a graph, or otherwise— , it is an easy matter to find the unknown
constants a Q , au • a n , bi, b2l

• • b n . In the present chapter we shall

give explicit formulas for computng these coefficients when the

number of equally spaced ordinates is either 12 or 24. We shall also

give schemes for reducing the numerical work to a minimum.

119. Case of 12 Ordinates. We assume that the period of the

unknown function is 27r and that the value of the function is known
for 12 equidistant values of the independent variable. The appropriate

formula is then

(119 : 1) y = ao + d\ cos x + a2 cos 2a: + a 3 cos 3x + a4 cos 4x

+ ab cos 5* + a 0 cos 6x + bx sin x + b2 sin 2x

+ 63 sin 3x + bi sin 4x 4' ^5 sin 5x.

Let the corresponding values of * and y be as given in the table below.

X D 30° 60° G9 180° 210° 300° 330*

y
l

y°
lB y*

1

y*
1

y4 y» yi yio yn

388



Art. 119] CASE OF 12 ORDINATES 389

Then on substituting in (119: 1) each of these corresponding sets of

values we obtain the following conditional equations:

yo = 0o+ 0i+0s+ 0s+ 04+ 05+0e+O - ii+0-

i

2+ 0- 63 —1— 0 - 64 —|- 0- ij,

,

V3 1 1 V3 1 y/3
j’i = 00 ——«i H a2 + O dj a 4 a 6 — a# H b 1 H i2

2 2 2 2 2 2

Vs 1

+ bt H——bi H bs,,

2 211 11 \/3 v/3
y2 — flo H —01 02 — 03 a 4 H as + H -b 1 -1

2 2 2 2 2 2

Vs Vs
+ 0J,-—Z>4 - —b6 ,

2 2

y'3 — 00 "I" 0 C 1 — 02 + O'03 + 04 + 0-06 — 06 + ^1 f' O'ij

-bt + O-bi + b*,11 11 V3
y« — do — 01 — 02 + 03 — 04 — 06 + 00 H b 1

2 2 2 2 2

V3 V3 v3
—1^2 + 0 - 63 H bi bt,

2 2 2

VS l 1 vs 1

ys - 00 — 01 -) 02 + 0- fl3
— 0

4 H 06 — 06 H b\
2 2 2 2 2

VS- Vs 1- —bt + b3
-—

i

4 + -bit

2 22
ye = 0q — 01 + 02 — 03 + 04 — 06 + fle + 0 • 61 + 0 62 + 0 bt + 0 b3 + 0 b 3)

yt

y*

yt

Vs 1 1 V3 1
= 00 01 H 02 + 0-03 0

4 H 06 — Of 61
2 2 2 2 2

Vs Vs 1

H——bt — b$ + ——

J

4
—bt ,

2 2 211 11 vs= 00 —01 —02 + 03 —04 —06 + 0* bl
2 2 2 2 2

VS VS VS
+ -yi, + 0- bt

- —bt + —bit

= 0o+ O-0i — 02 + 0-03 + 04 +

O

-06 — 0e — bi + O' bt + bt + O bi ~ bt,
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yio = do + — 1 11 y/3
—a* — as + —a* + as —b\
2 2 2 2

y/3 y/3
+ O is H

—

—b* H——&8,

y/3 1 1 y/3 1 y/3
yn = do H a

i

H #2 “h 0 • <x% — —a\ — a% — —fti
— bi

2 2 2 2 2 2

y/3 1

- fts- —bi - —bh .

2 2

To solve these equations for the a's and b’s we apply the rule of Art.

113 for writing down normal equations. Thus, to find a 0 we multiply

each equation by the coefficient of do in that equation and add the

results. We then get

12a0 = yo + yi + ys + ys + y« + y& + y« + y? + y8 + y» + yio + yn,

which gives a 0 explicitly in terms of the known quantities y0 , yn •
•

• yn.

To find ai we multiply each equation by the coefficient of d\ in that

equation and add the results. This gives*

y/3 1 1 y/3 y/3 1

6ai = y0 +—

y

i + —y2 - —y * ™ y% ' ~Y
yi “

~J
y *

1 y/3
+yy»° + —yn-

* The reason for the disappearance of all the a’s and Vs except one in the normal

equations is as follows:

Since the multipliers used in obtaining the normal equations are sines and cosines,

the coefficients of the a’s and A's in the resulting normal equations are all of some one of

the forms

X sin pXr, X cos q*, X sin pXr sin qxr, X sin pXr cos qXr, X cos P*r cos qxr,
» r r r r

X sin* pxry X cos* qxr ,

r r

where r takes the valueB 0, 1, 2,
• •

• (m— 1), and m is the number of equidistant ordi-

nates. But
X sin pXr — 0, X cos q*r 0, X sin pxt cos qxr • 0.
V _ r r

X sin sin qxr (h

X COS pxr COS 9Xr <

if P*q,

V*r“ p L co»’

Since only one of the a's or 6's in each normal equation has a coefficient of the form

X sin* pxr orX cos* qx
T , it is evident that all but one must disappear.

r t

For a simple and elegant proof of the relations given above the reader is referred to

Runge and Kdnig’s NumeHsches Rcchnen
,
page 212.
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Continuing in this manner, we get the following equations for finding

the remaining o’s and b’s :

11 11 11
6d* = yo + —y\ ——yt — ya ——y* + —ya + y« + —yi——y» — y»

1 1

- yyio + yy»i,

6aj = yo — ya + y* — y* + ys — yio,11 11 11
6a* = yo

- —yi - —ya + ya- —>'* ~ —y* + yt
- -y- - —y»

1 1

+ y» - —y™-—yu,

\/3 1 1 v/3 a/3 i

6a s = y0
-—y» + —y» ~ —y* + y-y» -

y* +y y?
- —y»

+ yyio - y-yn,

12a« = yo — Vi + ya — ya + 3'4 — y6 + >’6 — >’7 + \’s ~ y& + }'io - y ii)

1 v/3 V73 1 1 v'3
6ft, = —y, +—y2 + ys + y« + -yt —--yj - —y»

v'3 l

- y»
-—yio - —yn,

v'3662=—(yi + y*— y< — ys + y7 + y« - y>o- yn)

,

6ftj = yi — ys + y& — y7 + ys — yn,

\/3
6i« = y(yi — y2 + y«

— ys + y7 — ys + yio
— yn),

1 V'3 V'3 1 1 v'3
* yyi—-vs + ys

——>’4 + -- y»
——>’7 + y y» - yt

v'3 1

+Ty<«-jy

We could find the values of the a’s and i>’s directly from these equa-

tions, but it would be a tedious process on account of the large number

of terms in the right-hand members. We therefore reduce the number

of terms on the right by grouping terms and substituting new variables

for the different groups. The first grouping gives
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12

a

0 * (yo + yi) + (yi + yu) + (y2 + yio) + (y» 4- yi) + (y« + y»)

+ (y* 4- yi),

s/3 1 1

6ai = (yo — y») +—(yi + yu) 4- ~(y* 4- yio)
——(y« + yi)

Z Z «

s/3——(y& 4- yv),
Z

6oj =* (yo + y«) + y(yi 4- yn) — y(y2 4- y«o) ~ (y» + y»)

——(y4 4- yo) 4- —(yi 4- y?),

6a3 = (y0 - y») - (y2 4- yio) 4- (y< + yo),

6o« = (y0 4- y«)
— —(yi 4- yn) - y(y2 + yio) + (y» + y»)

l l- —(y* + yo)
- —(yi + yi),

s/3 1 1

6ab = (y0 - y»)——(yi + yu) + —(y2 4- yio)
- —(y* + yi)

+* £ &

' y/3
+—(ys + yi),

12a* = (yo 4- y«)
— (yi + yn) + (y2 4- yio) — (y* + y#) 4- (y< 4* yi)

- (yi 4- yD,

1 y/3 y/3
6bi = —(yi - yn) 4-—(y* - yio) + (y» - y») 4-—(yo - yo)

1

+ y(ys - y7),

\/3 r ,

6fc* =— [(yi - yn) + (y2 - yio) - (y< - y*) - (y» - y?)],

6b, = (yi - yn) - (y* - y>) + (y» - yi),

v ^ r i

6ft* *— [(yi - yn) - (y2 - yio) 4- (y« - y*) - (y* - yi)],
Z

1 -v/3 V3
6J, s —

(

yi - yn) —(ys - y, 0) + (y, - y,) —(y* - yi)
z z z

1

+ y(y* - yi)-
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Let us now put

yo + y« = wo

y\ + yn = wi

>’2 + yio = w 2

ya + y® =

y4 + ya = «4

ys + y? “ wb

yo - y« = »o

yi — yn = ®i

ya - yio = Va

ya - yo = »a

y4 - ya = »4

ya - y? = vB s

Then the normal equations become

12do = Wo + U\ + w2 + W3 + w* + Wb = (wo + w*) + (wi + Wb) + (w2 + 114),

y/3 1 1

6a\ = vo H ui + —w* w 4

2 2 2

1

\/3 V3—«» = fo +—(«i - «*)
2 2

+ y(«2 - ««),

11 1 1

6a2 = «0 H Ml «2 — Mj — M« H Mb = (Mo — Mj)
2 2 2 2

1 1
4-—(Ml + «s)

- —(«2 4- ut),
2 2

6a» = i»o — m* + «4 = »0 — (w2 — w4),

1 1 11 .1
6

a

4 = Wo Wi — —

w

2 -f- W3 w 4 w& = (wo -h Wj) ——(wi -f- Wb)
2 2 2 2 2

1

“T(«* + «4> i

v/3 1 1 V3 V3.
6®6 = Vo —Ml 4 U2 —Ui Mb = Vo —(Mj — Mb)

2 12 2 2

+ y(«s ~ «*),

12«* - MO - Ml 4- Ml - Ml + Ui - Ut = (m0 - Mj) - (Mi 4“ Mj) 4" (m* 4" M4),

V3
2

1 \/3
66

1

= —vt -1——-v2 4- v*
2 2

1 1 ,—Vt = —(vi 4- Vb)

2 2

V3
+—(®a 4- Vi) 4- v9 ,

*
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y/3 V3 r ,

66* =—(t>i + Vi - v4 - vt) - — l(»i — Vi) + (vt — t>4) J,

2 2

66* = Vi — Vi + r* = (»t + vt) - vt ,

y/3 y/3.
664 =—(®l - »* + »4 - Ps) =— l(»l — Vs) - (Vi - Vi) ],

z z

. 1 \/3 V3 1 1

66s * —Vi —vs + »* r-»4 + —vs = —(pi + v*)

2 2 2 2 2

\/3
~(®i + V*) + V»-

2

If we make the further substitutions

«o + «* = ro «o — «s = s0 Vi + vs = Pi

«1 + «* = Pi Ml — «6 = Si Vt + Vi = P*

M* + «4 * P* M* - Ui = 5s

the normal equations take the simpler forms

12a0 = r0 + ri + r2 = r0 + (pi + >”2),

y/3 1

6a i = t>o H——*i + ~s*i
2 211 1

,
6a* = Jo H ri — —p* = So + —(pi Ps),

2 2 2

Pi — ®s = qi

Vi — v4 = q2,

6a* = Po — Js 1

1

604 = Po — —Pi
2

—Ps — Po ~(pi + p*)>

a/3 1

60s = Po —Si + '~Ss,
2 2

12a« = Jo — Pi + p* = s0 — (pi — Ps),

1 V3 ,

1
,
V3

661 - —Pi +—Ps + p* = p» + —Pi +~Pi,

2 2 L L

V3,
66* = -y(gi + ?*),

66* - Pi - p*,



Art. 119] CASE OF 12 ORDINATES 395

a/3
6*4 = -^-f?! ~ 92)l

1 y/3 l \/3
6bi — —/>1 —/>2 + Vi — Vi + —p 1

Finally, we write

rj + rt - l ?i + ?! = g

ri — rs = w ?i — ?! = h.

Then the equations for finding the coefficients in the trigonometric

series are
1

flo = —(r0 + /),

12

(119:2)

1 / a/3 1 \
fli - — (

»

0 H si H s* ),

6 \ 2 2 /

1 / ,

1 \
Ol = 1 So + W ),

6 \ 2 /

1

ft GO
II ta0

1

1 ( 1 A
a4 = - [r0 - T 1

)*

1 / a/3
flt = — I »o

— —
Si -1

6 \ 2

1

a6 = —is0 - w),
12

1 / 1

».. 7 (..+ T* +

* 12*'

6* * —(pi — vt),
0

\/3

‘•-I?*’

,
1 l 1 V3 \ •

‘7v* + 7f‘“T p7
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The several substitutions made above can be accomplished very
simply by the addition and subtraction scheme given below.* starting

with the given y’s.

yo y\ yt y» y< y*

ye yn y™ y» yt v7

Sum «o «i «j «j «4 «s

Diff. Vn t»i Pj v» i/« »s

U0 Wl u2 Vl 1'2

«3 «6 Ua Vt Vi

Sum ro f\ rt pr ft

Diff. so Si S2 9i 9*

ri

r2 q2

Sum l g
Diff. m . h

The quantities v0 , vit and r0 are printed in heavy type because they

are somewhat isolated from the other quantities which appear in- the

final formulas for the coefficients.

Check formulas. Since the chances of making an error in the addi-

tions and subtractions are considerable, it is important to have a

reliable check on the computed a’s and b’s. As a check on the c’s we
have from the first conditional equation

yo = flo + «i + + o» + a« + at + o*.

To find a check for the b’s we subtract the twelfth conditional equa-

tion from the second, giving

yi — yn “ b\ + + 2bt 4- y/ibt + b%\

or, since

»i = yi — yu,

*1 * bi + bt + 26* + \/3(6» + bt)

.

The check formulas are therefore

* Such schemes for computing the s and b’s were first devised by Professor Carl

Runge about the year 1903. See Zeitsckrifl far Math, and Physik., XLVIII (1903),

p.443, and LII (1905), p. 117.
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(119:3)
I E« =

y»,

\ (*1 + bt) + 2is + V3(bt + 64) = ®1.

We shall now work an example to show the application of the above

scheme.

Example 1. Find an empirical formula to fit the following data:

X 0° 30° 60° 90° O
OC4 150° 180° 210® 240®' 270® 300° 330°

y 9.3 15.0 17.4 23.0 37.0 31.0 15.3 4.0 -8.0 -13.2 -14.2 -6.0

Solution . The first part of the computation is carried out according

to the scheme above and should be self-explanatory.

0 1 2 ; 3 4 5

y’s 9.3

15.3 -
15.0 17.4

6.0 -14.2

23.0

-13.2

37.0

-8.0

31.0

4.0

Sum («) 24.6 9.0 3.2 9.8 29.0 35.0

Diff. 0) ~ 6.0 21.0 31.6 36.2 45.0 27.0

0 1 2 1 2

m’s 24.6 9.0 3.2 i>’s 21.0 31.6

9.8 35.0 29.0 27.0 45.0

Sum (r) 34.4 44.0 32.2 Sum (p) 48.0 76.6

Diff. (5) 14.8 -26.0 -25.8 Diff. (q) - 6.0 -13.4

r’s 44.0 q's - 6.0

32.2 -13.4

l = 76.2 g = -19.4

m = 11.8 h = 7.4

Now substituting these quantities in equations (119: 2), we get

1

a° = —(34.4 -h 76.2) = 9.22,

1 / y/3 \
ai = — f - 6.0 - 26— - 12.9 1 = - 6.90,

a 2 = —(14.8 + 5.9) = 3.45,
6
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03 = —(- 6.0 + 25.8) = 3.30,
6

a4 = —(34.4 - 38.1) = - 0.62,
6

at

1 / a/3 \
" 7 (

" 6 0 + 26T " i2'7
" 0.60,

at = —(14.8 - 11.8) = 0.25,

h = —(36.2 + 24.0 + 66.3) - 21.09,
6

y/3
bt =—(- 19.4) = - 2.80,

12

b3 = —(48.0 - 36.2) = 1.97,
6

v/3
bi=

l2°
A) = 107

’

1

ft* = —(36.2 + 24.0 - 66.3) - - 1.02.
6

Applying the check formulas (119: 3), we have

£o = 9.30 = y0,

(bi + Js) + 2b, + \/3(bt + 64) * 24.01 = vi.

The coefficients are therefore correct and the final formula is

y
— 9.22 — 6.90 cos * + 3.45 cos 2* + 3^30 cos 3x — 0.62 cos4x

+ 0.60 cos 5* + 0.25 cos 6x + 21.09 sin x — 2.80 sin lx

+ 1.97 sin 3* + 1.07 sin 4* — 1.02 sin 5*.

Note. Since the terms of a trigonometric series are additive, it is

necessary that the coefficients all be computed to the same number of

decimal places (Art. 6).

120. Case of 24 Ordinates. For 24 equally spaced ordinates the

values of x are taken at equal intervals of 15° apart from 0° to 345°

inclusive. The appropriate formula for this case is
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(120 :1) y = at + <zi cos * + 02 cos 2* -f 03 cos 3* + at cos 4* + 0* cos 5*

+ 06 COS 6* + 07 COS lx + 0g COS 8* + 0« COS 9* + flio cos 10*

+ 0n cos 11* + ou cos 12* + 4i sin * + bt sin 2* + b» sin 3*

+ bi sin 4* -f bt sin 5* + bt sin 6* + bi sin 7* + bt sin 8*

+ bt sin 9* + 610 sin 10 + in sin 11*.

X 0
° 15° 0

0 45° 60° 75° 00° 0
O 120

° 135° 00inVH m
y yi yt yi * 3^6 yt yj yt yt yio yn y«

X 195° 210
° 225° 0

0**N 255° 270°
|

285° 300° 315° 00rO 345°

y yu yi4 y15 yw yn y*o y»

Let the corresponding values of * and y be as given in the table

above. Then on substituting in (120: 1) these corresponding values

of * and y we get 24 conditional equations. Applying to these the rule

for obtaining normal equatons, we get 24 equations in which the o’s

and i's are given explicitly in terms of the y’s. Then we group the terms

in the right-hand members, substitute new variabes for the different

groups, group again, etc., just as in the case of 12 ordinates. The final

formulas for computing the a's and b’s are found to be as follows:

do

dl

02

az

a 4

a t

V3 1 1

»o + Cji -|

—

—St -1 -| j4 + Ssi
2 \/2 2 >

1 / a/3 1 \
- (* + -y. + jm),

T2
(- + 4<S| " " " 5>) -4

n("t+l/)
1 / a/3 1 1 \- + Ss, -— -

-f, + j*.+ Cs.J,

(io —
12
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1 / a/3 11 \

Ti Y‘
+
vS*

+ 7 s' -

T2 (’“ " 7!
(, ‘

“ “ " *‘) -

"
75 r T” 1 + r->
1 / >/3 1 1 \

flu = uv0_ Csi

+

T* ~ vf*
+ T54 - Ssr

as

a9

a io

(120:2)

au = —(m0 - /),
24

b i

*t

1 / 1 1 \/3 \= — + —Pt + + —P* + CP‘

1/1 V3 \

"
15 (7“

+
T*'

+
V’

. V3
*• ’ IT

1 / 1 1 V3 \
*6 = — (C/>1 + y/>!

- —=pt — pi + Spi + Vt

J,

b» = —(gi ~ Q»),

1 / 1 1 V3
j7 „ - fcPl - -Pt - -=p3 + —p< + SPi

V3
,

bo =
24

’

*= — —
Pi + y|(£i + —

1/1 v/3 \

1 / 1 1 a/3 \
*n = — [Spx — —pt + y=/>» + Q* - uj,
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where C= cos 15° = 0.9659258, S= sin 15° = 0.2588190, and the other

quantities are obtained from the given y’s according to the following

scheme:

yo yi yt y» y* Vi y*yi yo y» y,o yn

yu y*a y2i yai y2o yi» yis yi7 yia y» yu y«

Sum «0 U X Ut «3 Ui Ub «« « 7 Us U9 «10 «11

Diff. V^o Vi Vt Vl Vi Vb Ve v7 Vs Vs V10 Vn

Uq u x «2
!

UZ U A Ub Vl V2 Vs V4 Vb

Ut Un «10 «9 Us «7 Vn Vis Vs V?

Sum r0 f2 fz U n Sum pi pi pi pi />*

So St Si Si Sb Diff. 91 9* 9fo 9« 9s

fo r 2 91 9* /, hi

74 9s 9« It ht

Sum lQ /, X Sum g. go Sum c Sum c

Diff. w0 Vfti Diff. A, h2 Diff./ Diff. d

Here the quantities v0 , »», and q3 are printed in heavy type because

they are somewhat isolated from the other quantities which appear

in the final formulas for the coefficients.

A check formula for the o's is given by the first conditional equation,

and is

= yo-

To find a check formula for the 6’s we subtract the 23d conditional

equation from the second and obtain

yi ~ y*» = «i = 25(6, + bn) + (6* + bw) + y/1(6, + 6»)

+ y/Wi + 6,) + 2C(bt + 67) + 26,.

The check formulas are therefore

{

Z« = yo,

25(6, + 6„) + (6, + 6,0) + ^2(6, + 6.) + y/S(b< + 6a)

+ 2C(6j + 67) + 26, = »,•

Example 2. Find an empirical formula to fit the data in the follow-

ing table:
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Solution. The preliminary quantities are found by the scheme below:

01 2 3 4 5 0789 10 11

y's 149 137 128 126 128 135 159 178 189 191 189 187

178 160 166 176 182 185 179 179 181 183 177 170

Sum («) 327 297 294 302 310 320 338 357 370 374 366 357

Diff. O’) -29 -23 -38 -50 -54 -50 -20 -1 8 8 12 17

0 i 2 4 s

u y

s 327 297 294 302 310 320

338 357 366 374 370 357

Sum to 665 654 660 676 680 677

Diff. to - 11 - 60 - 72 - 72 - 60 - 37

i 2 3 4 5

-23
17

— 38 -50 -54
12 8 8

-50
- 1

Sum (p) - 6 -26 -42 -46 — 5F

Diff. (?) -40 -50 -58 -62 -49

0 i 2 l 2

r ’

s

665
676

654
677

660 o’s

680
-40
-49

-50
-62

Sum (0 1341 1331 1340 Sum (g) -89 -112

Diff. 0«) -11 -23 -20 Diff. (h) 9 12

I’s 1331 h's 9

1340 12

e = 2671

/= -9

c = 21

d = -3
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Now substituting these quantities in (120: 2), we find

flo = 167.167, a, = - 19.983, =- 3.410, a» = 5.471,

o4 =- 1.292, a s = 0.250, </« = 0.750, o7 - 0.309,

a„ = 0.458, o 9 = — 0.304, o 10 = - 0.090, an = - 0.243,

a ij
= - 0.083.

6, = - 12.779, bi = - 16.625. b3 = - 0.323, 64 = 1.516,

64 = 1.462, 6« = - 2.583, 6 7 = 0.322, 6» =- 0.216,

69 = 0.677, 6,o = - 0.459, 6U = - 0.640.

The check formulas (120: 3) give

£a = 149.000 = y0,

2S(bx + 6u) + (6 : + 610) + \/2(63 + 69) + V3(6« + 6*) + 2C(6* + 67)

+ 26« * - 22.997 « Vl ,

practically.

Hence the required formula is

y = 167.167 - 19.983 cos .v - 3.410 cos 2x + 5.471 cos 3*

— 1 .292 cos4.v 0.250 cos 5.v + 0.750 cos 6x + 0.309 cos lx

+ 0.458 cos 8.v - 0 . 304 cos 9.,- - 0.090 cos lOx - 0 . 243 cos 1 l.r

— 0.083 cos 12.t — 12. 779 sin x— 16.625 sin 2x — 0.323 sin 3.v

+ 1 .516 sin 4,v + 1.462 sin 5x — 2.583 sin 6x + 0.322 sin 7*

— 0.216 sin 8 a- + 0.677 sin 9.v — 0.459 sin 10x — 0.640 sin ll.v.

The graph of this equation is shown in Fig. 25.

-n H—I— M—

i

.
1-t rl—t-rt* —I—I * 4-7*-

}0 fr* fo jio jro tie* XJO ST0* **c36

Fig. 25
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121. Miscellaneous Matters.

121a). Computation of the Coefficients for any Number of Equidistant

Ordinates. In this chapter we have considered only the cases where
the number of given ordinates is 12 or 24, because these are the most
important cases from a practical standpoint. It is possible, however,

to derive formulas for the o’s and b's in the case of any number of

equidistant ordinates, such as 6, 8, 10, 16, 20, etc. The method of

procedure in all these cases is exactly the same as that in the case

of 12 ordinates. Computing schemes for the cases just mentioned are

given in Running’s Empirical Formulas, pp. 76-85.

Poliak's Rechentafeln zur Harmonischen Analyse enable one to find

the c’s and b’s directly from the normal equations for any number of

equidistant ordinates from 3 to 40 inclusive. The tables are accompanied

by full directions for their use.

121b). Periods other than 2ic. When a function is periodic and has a

period different from 2ir, we change the independent variable by a

linear substitution. Thus, if x is the independent variable and the

given function is y =/(#), we write

(121:1) x=k + m6.

If the limits for x are 0 and p and we wish the limits of 6 to be 0 and
hr, we have only to substitute in (121 : 1) these corresponding valiles of

x and 6 and then solve the resulting equations for k and m. Hence in

this case we have from (121 : 1)

0 = 4 + 0, or 4 = 0;

p = 4 + 2irm = 2irm.

...

2tt

The required formula is therefore

(121 : 2) or 0
2rx

~P

Let us now consider the general case in which the lower and upper

limits for x are g and h, respectively. If the corresponding limits for 6

are 0 and 2ir, we have from (121 : 1)

and
g = 4 + 0, or 4 = g;

4=4 + 2irm — g + 2irm.

Hence m = (4— g)/2ir, and the desired formula of transformation is
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,

(* “ «) „
„* 2r(* ~ g)

(121 : 3) x = g -| 0, or fl = —
2tt A - g

In all these cases the proper formula to assume for y is

(121 : 4) y — a 0 + ai cos 0 + a* cos 20 + + an cos nd

+ bi sin 0 + ft* sin 20 + • • + ftn-i sin (« — 1)0.

For example, if the period of a phenomenon is known to be 18.3 days

and we wish to use 12 equidistant ordinates, the values of x correspond-

ing to these ordinates would be Xo = 0, *1 = 18.3/12 = 1.525, ** = 3.050,

etc. The corresponding values of 0 would be 0°, 30°, 60°, etc. The values

of the o’s and ft’s in (121 : 4) would be found by substituting in (121 : 4)

these values of 0 and the corresponding y’s, or simply applying the 12-

ordinate scheme to the given y’s. The resulting formula in terms of *

would then be. by (121 : 2) and (121 : 4),

/ 2irx \ / 2ttx \
(120: 5) y = flo + ai cos( 1 + o 2 cos 2 (

J
+ • •

\18 3/ \18-3/

/ 2irx \ ( 2ir* \
+ fti sin (

) + ft* sin 2 ( )+•••.
Vl8 3/ \18 3/

121c). Caution in the Use of Empirical Formulas. Empirical formulas

are really interpolation formulas of particular forms, and are therefore

subject to all the limitations of interpolation formulas. They can be

relied upon for all values of the independent variable within the range

of values used in determining the coefficients, but should not be trusted

outside of these limits, except possibly for very short distances outside

the range of values used. Stated otherwise, empirical formulas may
be used for interpolation but not for extrapolation.

If, however, the given function is known to have a certain form for

all values of the independent variable, we may use the formula for

computing rough values of the function outside the range of values used

in determining the coefficients.

EXAMPLES ON CHAPTER XVH

1. Find a periodic function that will fit the following data:

X 30° m 120°
150°

180° 210
°

240° 330
°

y 38.4 11.8 13.8 3.9 - 18.1 -22.9 - 27.2 - 23.8 8.2 31.7 34.2



406 HARMONIC ANALYSIS OF EMPIRICAL FUNCTIONS (Chap. XVII

2. Do the same for the folic zing:

X 0°
15

°n 45
°

60
° 75

° 90°m i19ES£9 180®

y 45 142
;

128 138 88 -2 -12 -.25 -39 -21 -38 -69

195
° o

OtH 225
°

240
°

255
°

270 °
285

°
300

° 315
°

330
°

345®

-78 -90 ! -112 -92 -70 -45
1

25 68 59 40 54

3. The equation of time for twelve equidistant intervals in a certain

year is given in the following table. Taking the period of this phe-

nomenon to. be 365.2 days, find an empirical formula that will give its

value at any instant in that year.

3m 10‘.9, 13m30".4, 12 ro20*.6, 3m53*.6, - 3m2\7, — 2m22».6, 3m42’.0,

9"'10®.0, 0m9“.3, - 10m 13‘.8, - 16™. 1 8“.2, - 10m59*.6.

4. The period of a certain phenomenon is 14.4 days. Twenty-four

values for equal time intervals are given below. Find an empirical

formula to represent this phenomenon.

2.4, 5.6, 6.7, 7.4, 8.8, 9.9,10.4,12.0,13.8,14.9,16.4,16.8,17.5,

18 4, 19.2,20.8,21.4, 20.5, 18.5, 16.0, 15.1, 14.8, 12.2,6.4.



APPENDIX
VALUES OF THE PROBABILITY INTEGRAL

2 r 1

P = -7= I C~ t2dt, where t - hx.

V » •'0

hx 0 1 2 3 4 5 6 7 8 9

0.00 0.00000 00113 00226 00339 00451 00564 00677 00790 00903 01016
0.01 0.01128 01241 01354 01467 01580 01792 01805 01918 02031 02144

0.02256 02369 02482 02595 02708 02820 02933 03046 03159 03271
0.03384 03497 03610 03722 03835 03948 04060 04173 04286 04398
0.04511 04624 04736 04849 04962 05074 05187 05299 05412 05525

0.05637 05750 05862 05975 06087 06200 06312 06425 06537 06650
0.06762 06875 06987 07099 07212 07324 07437 07549 07661 07773
0.07886 07998 08110 08223 08335 08447 08559 08671 08784 08896
0.09008 09120 09232 09344 09456 09568 09680 09792 09904 10016
0.10128 10240 10352 10464 10576 10687 10799 10911 11023 11135

0.10 0.11246 11358 11470 11581 11693 11805 11916 12028 12139 12251
0.11 0.12362 12474 12585 12697 12808 12919 13031 13142 13253 13365
.12 0.13476 13587 13698 13809 13921 14032 14143 14254 14365 14476
.13 0.14587 14698 14809 14919 15030 15141 15252 15363 15473 15584
.14 0.15695 15805 15916 16027 16137 16248 16358 16468 16579 16689

.15 O.luSOO 16910 17020 17130 17241 17351 17461 17571 17681 17791

.16 0.17901 18011 18121 18231 18341 18451 18560 18670 18780 18890

.17 0.18999 19109 19218 19328 19437 19547 19656 19766 19875 19984

.18 0.20094 20203 20312 20421 20530 20639 20748 20857 20966 21075

.19 0.21184 21293 21402 21510 21619 21728 21836 21945 22053 22162

.20 0.22270 22379 22487 22595 22704 22812 22920 23028 23136 23244

.21 0.23352 23460 23568 23676 23784 23891 23999 24107 24214 24322

.22 0.24430 24537 24645 24752 24859 24967 25074 25181 25288 25395

.23 0.25502 25609 25716 25823 25930 26037 26144 26250 26357 26463

.24 0.26570 26677 26783 26889 26996 27102 27208 27314 27421 27527

.25 0.27633 27739 27845 27950 28056 28162 28268 28373 28479 28584

.26 0.28690 28795 28901 29006 29111 29217 29322 29427 29532 29637

.27 0.29742 29847 29952 30056 30161 30266 30370 30475 30579 30684

. 28 0.30788 30892 30997 31101 31205 31309 31413 31517 31621 31725

.29 0.31828 31922 32036 32139 32243 32346 32450 32553 32656 32760

.30 0.32863 32966 33069 33172 33275 33378 33480 33583 33686 33788

.31 0.33891 33993 34096 34198 34300 34403 34505 34607 34709 34811

.32 0.34913 35014 35116 35218 35319 35421 35523 35624 35725 35827

.33 0.35928 36029 36130 36231 36332 36433 36534 36635 36735 36836
1.34 0.36936 37037 37137 37238 37338 37438 37538 37638 37738 37838

1.35 0.37938 38038 38138 38237 38337 38436 38536 38635 38735 38834
1.36 0.38933 39037 39131 39230 39329 39428 39526 39625 39724 39822
.37 0.39921 40019 40117 40215 40314 40412 40510 40608 40705 40803
.38 0.40901 40999 41096 41194 41291 41388 41486 41583 41680 41777
.39 0.41874 41971 42068 42164 42261 42358 42454 42550 42647 42743

1.40 0.42839 42935 43031 43127 43223 43319 43415 43510 43606 43701
1.41 0.43797 43892 43988 44083 44178 44273 44368 44463 44557 44652
(.42 0.44747 44841 44936 45030 45124 45219 45313 45407 45501 45595
1.43 0.45689 45782 45876 45970 46063 46157 46250 46343 46436 46529
1.44 0.46623 46715 46808 46901 46994 47086 47179 47271 47364 47456

.45 0.47548 47640 47732 47824 47916 48008 43100 48191 48283 48374

.46 I 0.48466 48557 48648 48739 48830 48921 49012 49103 49193 49284
1.47 I 0.49375 49465 49555 49646 49736 49826 49916 50006 50096 50185
1.48 0.50275 50365 50454 50543 50633 50722 50811 50900 50989 51078

/

>.49 0.51167 51256 51344 51433 51521 51609 51698 51786 51874 51962
/
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2. Do the same for the folic zing:

X 0°m 30°
45

°
60

°
75

°
90

°nH 135
°IS 165

° 180°

y 45 110 142 128 138 88 -2 -12 -25 -39 -21 -38 -69

195
° 210° 225 ° 240°

255
°

to ©
o

285
° 300° 315 ° 330 ° 345 °

-78 -112 -92 ©1 -45 25 68 59 40 54

3. The equation of time for twelve equidistant intervals in a certain

year is given in the following table. Taking the period of this phe-

nomenon to.be 36S.2 days, find an empirical formula that will give its

value at any instant in that year.

3m 10‘.9, 13m30\4, 12m20*.6, 3n,53’.6, - 3 n,2”.7, - 2m22‘.6, 3 ,,’42,
.0,

9m 10*.0, 0m9\3, - 10m 13‘.8, - 16m .18".2, - 10m59".6.

4. The period of a certain phenomenon is 14.4 days. Twenty-four

values for equal time intervals are given below. Find an empirical

formula to represent this phenomenon.

2.4, 5.6, 6.7, 7.4, 8.8, 9.9,10.4,12.0,13.8,14.9,16.4,16.8,17.5,

18 4, 19.2, 20.8, 21.4, 20.5, 18.5, 16.0, 15.1, 14.8, 12.2, 6.4.



APPENDIX
VALUES OF THE PROBABILITY INTEGRAL

2 r t

P = —= I e- t2dt, where t = hx.
y/rr Jo

hx

0.00
0.01
0.02
0.03
0.04

0.05
0.06
0.07
0.08
0.09

0.10
0.11
0.12
0.13
0.14

0.15
0.16
0.17
0.18
0.19

0.20
0.21
0.22
0.23
0.24

0.25
0.26
0.27
0.28
0.29

0.30
0.31
0.32
0.33
0.34

0.35
0.36
0.37
0.38
0.39

0.40
0.41
0.42
0.43
0.44

0.45
0.46
0.47
0 48
0.49

0 123456789
0.00000 00113 00226 00339 00451 00564 00677 00790 00903 01016
0.01128 01241 01354 01467 01580 01792 01805 01918 02031 02144
0.02256 02369 02482 02595 02708 02820 02933 03046 03159 03271
0.03384 03497 03610 03722 03835 03948 04060 04173 04286 04398
0.04511 04624 04736 04849 04962 05074 05187 05299 05412 05525

0.05637 05750 05862 05975 06087 06200 06312 06425 06537 06650
0.06762 06875 06987 07099 07212 07324 07437 07549 07661 07773
0.07886 07998 08110 08223 08335 08447 08559 08671 08784 08896
0.09008 09120 09232 09344 09456 09568 09680 09792 09904 10016
0.10128 10240 10352 10464 10576 10687 10799 10911 11023 11135

0.11246 11358 11470 11581 11693 11805 11916 12028 12139 12251
0.12362 12474 12585 12697 12808 12919 13031 13142 13253 13365
0.13476 13587 13698 13809 13921 14032 14143 14254 14365 14476
0.14587 14698 14809 14919 15030 15141 15252 15363 15473 15584
0.15695 15805 15916 16027 16137 16248 16358 16468 16579 16689

0 16800 16910 17020 17130 17241 17351 17461 17571 17681 17791
0.17901 18011 18121 18231 18341 18451 18560 18670 18780 18890
0.18999 19109 19218 19328 19437 19547 19656 19766 19875 19984
0.20094 20203 2031 ? 20421 20530 20639 20748 20857 20966 21075
0.21184 21293 21402 21510 21619 21728 21836 21945 22053 22162

0.22270 22379 22487 22595 22704 22812 22920 23028 23136 23244
0.23352 23460 23568 23676 23784 23891 23999 24107 24214 24322
0.24430 24537 24645 24752 24859 24967 25074 25181 25288 25395
0.25502 25609 25716 25823 25930 26037 26144 26250 26357 26463
0.26570 26677 26783 26889 26996 27102 27208 27314 27421 27527

0.27633 27739 27845 27950 28056 28162 28268 28373 28479 28584
0.28690 28795 28901 29006 29111 29217 29322 29427 29532 29637
0.29742 29847 29952 30056 30161 30266 30370 30475 30579 30684
0.30788 30892 30997 31101 31205 31309 31413 31517 31621 31725
0.31828 31922 32036 32139 32243 32346 32450 32553 32656 32760

0.32863 32966 33069 33172 33275 33378 33480 33583 33686 33788
0.33891 33993 34096 34198 34300 34403 34505 34607 34709 34811
0.34913 35014 35116 35218 35319 35421 35523 35624 35725 35827
0.35928 36029 36130 36231 36332 36433 36534 36635 36735 36836
0.36936 37037 37137 37238 37338 37438 37538 37638 37738 37838

0.37938 38038 38138 38237 38337 38436 38536 38635 38735 38834
0.38933 3903 ? 39131 39230 39329 39428 39526 39625 39724 39822
0.39921 40019 40117 40215 40314 40412 40510 40608 40705 40803
0.40901 40999 41096 41194 41291 41388 41486 41583 41680 41777
0.41874 41971 42068 42164 42261 42358 42454 42550 42647 42743

0 . 4283° 42°35 43031 43127 43223 43319 43415 43510 43606 43701
0.43797 43892 43988 44083 44178 44273 44368 44463 44557 44652
0.44747 44841 44936 45030 45124 45219 45313 45407 45501 45595
0.45689 45782 45876 45970 46063 46157 46250 46343 46436 46529
0.46623 46715 46808 46901 46994 47086 47179 47271 47364 47456

0.47548 47640 47732 47824 47916 48008 48100 48191 48283 48374
0.48466 48557 48648 48739 48830 48921 49012 49103 49193 49284
0.49375 49465 49555 49646 49736 49826 49916 50006 50096 50185
0.50275 50365 50454 50543 50633 50722 50811" 50900 50989 51078
0.51167 51256 51344 51433 51521 51609 51698 51786 51874 51962



VALUES OF THE PROBABILITY INTEGRAL
2 C *

P « —p. I e-^dt, 'where t “ hx.

hx 0 12345678
0.50 0.52050 52138 52226 52313 52401 52488 52576 52663 52750 52837
0.51 0.52924 53011 53098 53185 53272 53358 53445 53531 53617 53704
0.52 0.53790 53876 53962 54048 54134 54219 54305 54390 54476 54561
0.53 0.54646 54732 54817 54902 54987 55071 55156 55241 55325 55410
0.54 0.55494 55578 55662 55746 55830 55914 55998 56082 56165 56249

0.55 0.56332 56416 56499 56582 56665 56748 56831 56914 56996 57079
0.56 0.57162 57244 57326 57409 57491 57573 57655 57737 57818 57900
0.57 0.57982 58063 58144 58226 58307 58388 58469 58550 58631 58712
0.58 0.58792 58873 58953 59034 59114 59194 59274 59354 59434 59514
0.59 0.59594 59673 59753 59832 59912 59991 60070 60149 60228 60307

0.60 0.60386 60464 60543 60621 60700 60778 60856 60934 61012 61090
0.61 0.61168 61246 61323 61401 61478 61556 61633 61710 61787 61864
0.62 0.61941 62018 62095 62171 62248 62324 62400 62477 62553 62629
0.63 0.62705 62780 62856 62932 63007 63083 63158 63233 63309 63384
0.64 0.63459 63533 63608 63683 63757 63832 63906 63981 64055 64129

0.65 0.64203 64277 64351 64424 64498 64572 64645 64718 64791 64865
0.66 0.64938 65011 65083 65156 65229 65301 65374 65446 65519 65591
0.67 0.65663 65735 65807 65878 65950 66022 66093 66165 66236 66307
0.68 0.66378 66449 66520 66591 66662 66732 66803 66873 66944 67014
0.69 0.67084 67154 67224 67294 67364 67433 67503 67572 67642 67711

0.70 0.67780 67849 67918 67987 68056 68125 68193 68262 68330 68398
0.71 0.68467 68535 68603 68671 68738 68806 68874 68941 69009 69076
0.72 0:69143 69210 69278 69344 69411 69478 69545 69611 69678 69744
0.73 0.69810 69877 69943 70009 70075 70140 70206 70272 70337 70403
0.74 0.70468 70533 70598 70663 70728 70793 70858 70922 70987 71051

0.75 0.71116 71180 71244 71308 71372 71436 71500 71563 71627 71690
0.76 0.71754 71817 71880 71943 72006 72069 72132 72195 72257 72320
0.77 0.72382 72444 72507 72569 72631 72693 72755 72816 72878 72940
0.78 0.73001 73062 73124 73185 73246 73307 73368 73429 73489 73550
0.79 0.73610 73671 73731 73791 73851 73911 73971 74031 74091 74151

0.80 0.74210 74270 74329 74388 74447 74506 74565 74624 74683 74742
0.81 0.74800 74859 74917 74976 75034 75092 75150 75208 75266 75323
0.82 0.75381 75439 75496 75553 75611 75668 75725 75782 75839 75896
0.83 0.75952 76009 76066 76122 76178 76234 76291 76347 76403 76459
0.84 0.76514 76570 76626 76681 76736 76792 76847 76902 76957 77012

0.85 0.77067 77122 77176 77231 77285 77340 77394 77448 77502 77556
0.86 0.77610 77664 77718 77771 77825 77878 77932 77985 78038 78091
0.87 0.78144 78197 78250 78302 78355 78408 78460 78512 78565 78617
0.88 0.78669 78721 78773 78824 78876 78928 78979 79031 79082 79133
0.89 0.79184 79235 79286 79337 79388 79439 79489 79540 79590 79641

0.90 0.79691 79741 79791 79841 79891 79941 79990 80040 80090 80139
0.91 0.80188 80238 80287 80336 80385 80434 80482 80531 80580 80628
0.92 0.80677 80725 80773 80822 80870 80918 80966 81013 81061 81109
0.93 0.81156 81204 81251 81299 81346 81393 81440 81487 81534 81580
0.94 0.81627 81674 81720 81767 81813 81859 81905 81951 81997 82043

0.95 0.82089 82135 82180 82226 82271 82317 82362 82407 82452 82497
0.96 0.82542 82587 82632 82677 82721 82766 82810 82855 82899 82943
0.97 0.82987 83031 83075 83119 83162 83206 83250 83293 83337 83380
0.98 0.83423 83466 83509 83552 83595 83638 83681 83723 83766 83808
0.99 0.83851 83893 83935 83977 84020 84061 84103 84145 84187 84229



VALUES OF THE PROBABILITY INTEGRAL

P — —= f e-*dt, where t hx.
J •

hx 0 123456789
1.00 0.84270 84312 84353 84394 84435 84477 84518 84559 84600 84640
1.01 0.84681 84722 84762 84803 84843 84883 84924 84964 85004 85044
1.02 0.85084 85124 85163 85203 85243 85282 85322 85361 85400 85439
1.03 0.85478 85517 85556 85595 85634 85673 85711 85750 85788 85827
1.04 0.85865 85903 85941 85979 86017 86055 86093 86131 86169 86206

1.05 0.86244 86281 86318 86356 86393 86430 86467 86504 86541 86578
1.06 0.86614 86651 86688 86724 86760 86797 86833 86869 86905 86941
1.07 0.86977 87013 87049 87085 87120 87156 87191 87227 87262 87297
1.08 0.87333 87368 87403 87438 87473 87507 87542 87577 87611 87646
1.09 0.87680 87715 87749 87783 87817 87851 87885 87919 87953 87987

1.10 0.88021 88054 88088 88121 88155 88188 88221 88254 88287 88320
1.11 0.88353 88386 88419 88452 88484 88517 88549 88582 88614 88647
1.12 0.88679 88711 88743 88775 88807 88839 88871 88902 88934 88966
1.13 0.88997 89029 89060 89091 89122 89154 89185 89216 89247 89277
1.14 0.89308 89339 89370 89400 89431 89461 89492 89522 89552 89582

1.15 0.89612 89642 89672 89702 89732 89762 89792 89821 89851 89880
1.16 0.8'9910 89939 89968 89997 90027 90056 90885 90114 90142 90171
1.17 0.90200 90229 90257 90286 90314 90343 90371 90399 90428 90456
1.18 0.90484 90512 90540 90568 90595 90623 90651 90678 90706 90733
1.19 0.90761 90788 90815 90843 90870 90897 90924 90951 90978 91005

1.20 0.91031 91058 91085 91111 91138 91164 91191 91217 91243 91269
1.21 0.91296 91322 91348 91374 91399 91425 91451 91477 91502 91528
1.22 0.91553 91579 91604 91630 91655 91680 91705 91730 91755 91780
1.23 0.91805 91830 91855 91879 91904 91929 91953 91978 92002 92026
1.24 0.92051 92075 92099 92123 92147 92171 92195 92219 92243 92266

1.25 0.92290 92314 92337 92361 92384 92408 92431 92454 92477 92500
1.26 0.92524 92547 92570 92593 92615 92638 92661 92684 92706 92729
1.27 0.92751 92774 92796 92819 92841 92863 92885 92907 92929 92951
1.28 0.92973 92995 93017 93039 93061 93082 93104 93126 93147 93168
1.29 0.93190 93211 93232 93254 93275 93296 93317 93338 93359 93380

1.30 0.93401 93422 93442 93463 93484 93504 93525 93545 93566 93586
1.31 0.93606 93627 93647 93667 93687 93707 93727 93747 93767 93787
1.32 0.93807 93826 93846 93866 93885 93905 93924 93944 93963 93982

1.33 0.94002 94021 94040 94059 94078 94097 94116 94135 94154 94173
1.34 0.94191 94210 94229 94247 94266 94284 94303 94321 94340 94358

1.35 0.94376 94394 94413 94431 94449 94467 94485 94503 94521 94538
1.36 0.94556 94574 94592 94609 94627 94644 94662 94679 94697 94714

1.37 0.94731 94748 94766 94783 94800 94817 94834 94851 94868 94885

1.38 0.94902 94918 94935 94952 94968 94985 95002 95018 95035 95051

1.39 0.95067 95084 95100 95116 95132 95148 95165 95181 95197 95213

1.40 0.95229 95244 95260 95276 95292 95307 95323 95339 95354 95370

1.41 0.95385 95401 95416 95431 95447 95462 95477 95492 95507 95523

1.42 0.95538 95553 95568 95582 95597 95612 95677 95642 95656 95671

1.43 0.95686 95700 95715 95729 95744 95758 95773 95787 95801 95815

1.44 0.95830 95844 95858 95872 95886 95900 95914 95928 95942 95956

1.45 0.95970 95983 95997 96011 96024 96038 96051 96065 96078 96092

1.46 0.96105 96119 96132 96145 96159 96172 96185 96198 96211 96224

1.47 0.96237 96250 96263 96276 96289 96302 96315 96327 96340 96353

1.48 0.96365 96378 96391 96403 96416 96428 964*0 96453 96465 96478

1.49 0.96490 96502 96514 96526 96539 96551 96563 96575 96587 96599



VALUES OF THE PROBABILITY INTEGRAL
2 r t

P = -7= I e~*
2
dt, where t — hx.

V* Jo

hx 0 2 4 6 8 hx 0 2 4 6 8

1.50 0.96611 966.14 96658 96681 96705 2.00 0.99532 99536 99540 99544 99548
1.51 0.96728 96751 96774 96796 96819 2.01 0.99552 99556 99560 99564 99568
1.52 0.96841 96864 96886 96908 96910 2.02 0.99572 99576 99580 99583 99587
1.53 0.96952 96973 96995 97016 97037 2.03 0.99591 99594 99598 99601 99605
1.54 0.97059 97080 97100 97121 97142 2.04 0.99609 99612 99616 99619 99622

1.55 0.97162 97181 97201 97221 97243 2.05 0.99626 99629 99633 99636 99639
1.56 0.97263 97283 97302 97322 97341 2.06 0.99642 99646 99649 99652 99655
1.57 0.97160 97179 97198 97417 97416 2.07 0.99658 99661 99664 99667 99670
1.'58 0.97455 97473 97492 97510 97528 2.08 0.99673 99676 99679 99682 99685
1.59 0.97546 97564 97582 97600 97617 2.09 0.99688 99691 99694 99697 99699

1.60 0.97635 97652 97670 97687 97704 2.10 0.99702 99705 99707 99710 99713
1.61 0.97721 97738 97754 97771 97787 2.11 0.99715 99718 99721 99723 99726
1.62 0.97804 97820 97836 97852 97868 2.12 0.99728 99731 99733 99736 <>9738

1.63 0.97884 97900 97916 97931 97947 2.13 0.99741 99743 99745 99748 99750
1 64 0.97962 97977 97993 98008 98023 2.14 0.99753 99755 99757 99759 99762

1.65 0.98038 98052 98067 98082 98096 2.15 0.99764 99766 99768 99770 99773
1.66 0.98110 98125 98139 98151 98167 2.16 0.99775 99777 99779 99781 99783
1.67 0.98181 98195 98209 98222 98236 2.17 0.99785 99787 99789 99791 99793
1.68 0.98249 98263 98276 98289 98102 2.18 0.99795 99797 99799 99801 99803

1.69 0.98315 98328 98341 98354 98366 2.19 0.99805 99806 99808 99810 99812

1.70 0.98379 98392 98404 98416 98429 2.20 0.99814 99815 99817 99819 99821
1.71 0.98441 98453 98465 98477 98489 2.21 0.99822 99824 99826 99827 99829
1.72 0.98500 98512 98524 98535 98546 2.22 0.99831 99832 99834 99836 99837
1.73 0.98558 98569 98580 98591 98602 2.23 0.99839 99840 99842 99843 99845
1.74 0.98613 98624 98635 98646 98657 2.24 0.99846 99848 99849 99851 99852

1.75 0.98667 98678 98688 98699 98709 2.25 0.99854 99855 99857 99858 99859
1.76 0.98719 98729 98739 98749 98759 2.26 0.99861 99862 99863 99865 99866
1.77 0.98769 98779 98789 98798 98808 2.27 0.99867 99869 99870 99871 99873
1.78 0.98817 98827 98836 98846 98855 2.28 0.99874 99875 99876 99877 99879
1.79 0.98864 98873 98882 98891 98900 2.29 0.99880 99881 99882 99883 99885

1.80 0.98909 98918 98927 98935 98944 2.30 0.99886 99887 99888 99889 99890
1.81 0.98952 98961 98969 98978 98986 2.31 0.99891 99892 99893 99894 99896
1.82 0.98994 99003 99011 99019 99027 2.32 0.99897 99898 99899 99900 99901
1.83 0.99015 99041 99050 99058 99066 2.33 0.99902 99903 99904 99905 99906
1.84 0.99074 99081 99089 99096 99104 2.34 0.99906 99907 99908 99909 99910

1.85 0.99111 99118 99126 99133 99140 2.35 0.99911 99912 99913 99914 99915
1.86 0.99147 99154 99161 99168 99175 2.36 0.99915 99916 99917 99918 99919
1.87 0.99182 99189 99196 99202 99209 2.37 0.99920 99920 99921 99922 99923

1
1.88 0.99216 99222 99229 99235 99242 2.38 0.99924 99924 99925 99926 99927

j

1.89 0.99248 99254 99261 99267 99273 2.39 0.99928 99928 99929 99930 99930

1.90 0.99279 99285 99291 99297 99303 2.40 0.99931 99932 99933 99933 99934
1.91 0.99309 99315 99321 99326 99332 2.41 0.99935 99935 99936 99937 99937
1.92 0.99338 99343 99349 99355 99360 2.42 0.99938 99939 99939 99940 99940
1.93 0.99366 99371 99376 99382 99387 2.43 0.99941 99942 99942 99943 99943
1.94 0.99392 99397 99403 99408 99413 2.44 0.99944 99945 99945 99946 99946

1.95 0.99418 99423 99428 99433 99438 2.45 0.99947 99947 99948 99949 99949
1.96 0.99443 99447 99452 99457 99462 2.46 0.99950 99950 99951 99951 99952
1.97 0.99466 99471 99476 99480 99485 2.47 0.99952 99953 99953 99954 99954
1.98 0.99489 99494 99498 99502 99507 2.48 0.99955 99955 99956 99956 99957
1.99 0.99511 99515 99520 99524 99528 2.49 0.99957 99958 99958 99958 99959
2.00 0.99532 99536 99540 99544 99548

i

2.50 0.99959 99960 99960 99961 99961



VALUES OF THE PROBABILITY INTEGRAL

P = —p I where t = hx.
yir •'o

0 1 2 3 4 5 6 7 8 9

0.99959 99961 99963 99965 99967 99969 99971 99972 99974 99975
0.99976 99978 99979 99980 99981 99982 99983 99984 99985 99986
0.99987 99987 99988 99989 99989 99990 99991 99991 99992 99992
0.99992 99993 99993 99994 99994 99994 99995 99995 99995 99996
0.99996 99996 99996 99997 99997 99997 99997 99997 99997 99998
0.99998 99998 99998 99998 99998 99998 99998 99998 99999 99999
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Absolute error, 3
Accuracy in determination of arguments,

24
in evaluation of formulas, 19

of addition, 9
of averages, 10
of division, 13, 17
of interpolation formulas, 84
of linear interpolation, 94
of logs and antilogs, 15, 18
of multiplication, 12, 17
of powers and roots, 14, 18
of products and quotients, 12, 13, 17
of subtraction, 11, 12

Adams, J. C., 267
method of, 267

. remarks on, 272
Addition, errors of, 9
Adopted values (of physical constants)

,
20

Alternating series, error in, 30
Antilogarithms, accuracy of, 16, 17
Approximate calculations, 1

numbers, 1

Arguments, accuracy in determination of,

24
exponential functions, 26
logarithms, 24
trigonometric functions, 25

Asymptotic series, 140, 298
Average deviation, 323

error, 320
Averages, accuracy of, 10
method of, 357

Ballistic equations, 251
Bessel's formula of interpolation, 64

for interpolating to halves, 64
power series form of, 81
symmetrical form of, 65

Binomial series, 30
remainder term of, 31

Carvallo, 217
Caution in use of empirical formulas, 405

in use of quadrature formulas, 142
Central-Difference formulas,

of interpolation, 56
quadrature, 124

geometric significance of, 128
remainder terms in, 165

Charlier, C. L., 169
Check formulas, for 1 2 ordinates, 396, 397

for 24 ordinates, 401
Chevilliet’s formula, 161

Complex roots, detection of, 206
computation of, by Graeffe's method,205

Convergence of iteration process, for alge-

braic and transcendental equations,

186, 193

for differential equations, 256, 257
Cubature, mechanical. 117, 146
formula for, 146
general statement concerning, 148

Derivatives, nth, 33
partial, of tabulated functions, 117

Derivatives and differences, relation be-
tween, 86

Detection of complex roots, 206
Deviation, average, 323

standard, 323
Diagonal difference table, 40
Differences, 40

double, 103
of a polynomial, 45

Differential equations, numerical solution
of,

by Adams's method, 267
by iteration method, 218
by Milne's method, 280
by the Runge-Kutta method, 273
by successive approximations, 218
accuracy of, 264, 275
principle of, 218
starting the solution, 222, 267

Differentiation, numerical, 114
partial, of tabulated functions, 117

Direct measurements, 317
Division, accuracy of, 13, 17
Double differences, 103
Double interpolation,

by repeated single interpolation, 96
formula for, 106

remainder term of, 111, 112

Empirical formulas, 351
caution in use of, 405
finding best type of, 383
finding constants in,

by method of averages, 357
by method of least squares, 363
by plotting, 351
when both variables are subject to

error, 380
when residuals are weighted, 370

general case of non-linear formulas, 374
Equal effects, method of, 340

principle of, 21
Equations, algebraic and transcendental,

171
locating the roots of, 171
solution of

by iteration, 184, 191
by method of false position, 174
by Newton-Raphson method, 178, 187

1 by repeated plotting, 177
Equations, ballistic, 251

413
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Equations, differential, numerical solution

of

by Adams’s method, 267
by Milne’s method, 280
by the Runge-Kutta method, 273
by successive approximations, 218
accuracy of, 264, 275
principle of, 218
starting the solution, 222, 267

Error, absolute, 3

average, 320
in difference table, effect of, 43, 44
inherent, in Euler's formula, 169

in Gauss’s formula, 167
in Newton-Raphson method, 183
in Simpson’s one-third rule, 155, 156,

163
in Simpson’s three-eighths rule, 155
in Weddle’s rule, 155

mean, of gun, 301
mean square, 318
of measurement. 308
percentage, 3

probable, 319
percentage, 338
relative, 338

relative, 3

Error function, 288
Errors, accidental, 284

general formula for, 7

of addition, 9
of subtraction, 11

relatively small, 8
systematic, 284

Euler, 218
method of, 223

Euler’s formula of quadrature, 139
of summation, 140
error in, 169
compared with Simpson's rule, 169

Evaluation of formulas, accuracy in, 19
of probability integral, 296

Exponential series, remainder term in, 31,
32

Extrapolation, 53

False position, method of, 174
Function G(v) t 252

H(y), 251
Function table, 96
Functional equation, 290

Gauss, 113, 131
Gauss’s quadrature formula, 132

expressions for error in, 167
Geometric significance of central-differ-

ence quadrature formulas, 128
of Simpson's rule, 120
of Weddle’s rule, 121
of Weierstrass’s theorems, 39

Graeffe’s root-squaring method, 198
for complex roots, 205
for equal roots. 214
for real roots, 201
principle of, 198

Graphical determination of constants in

empirical formulas, 351
solution of equations, 177

Hermite’s formula, 112
Horizontal difference table, 41

Index of precision, 292
Indirect measurements, 317, 337
fundamental problems of, 339

Integrating ahead, formula for, 227
Integration, numerical. See Numerical in-

tegration

Interpolation, definition of, 38
accuracy of, 84
Bessel's formulas for, 64, 65
double, 96, 104
inverse, 75

Lagrange’s formula for, 73
Stirling^ formula for, 60
trigonometric, 112

Interpolation series, 84
Inverse interpolation, 75

by Lagrange's formula, 75
by reversion of series, 79
by successive approximations, 76

Iteration process for algebraic and trans-

cendental equations, 184, 191

convergence of, 186, 193
for differential equations, 218, 232

convergence of, 256, 257 .

maximum error due to, 266

Lagrange’s formula of interpolation, 73
remainder term in, 86, 91
uses of, 74

Law of accidental errors, 284
Law of error of a function, 296
Least squares, method of, 363

principle of, 304
Linear interpolation, accuracy of, 94
when permissible, 95

Logarithms, accuracy of, 15, 16
Logarithmic series, remainder term in, 32

Maclaurin’s series, 28
remainder term in, 28

Magnitude factor, 329
Maxima and minima of tabulated func-

tions, 116
Mean error of gun, 301
Mean square error, 318
Measures of precision, 318
computation of, from residuals, 324
geometric significance of, 322
relations between, 321

Merriman, Mansfield, 380
Method of averages, 357

of equal effects, 340
of false position, 174
of iteration (see Iteration)

of successive approximations, 218
Milne, W. E., 280
Milne’s method, 280
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Modulus of complex roots, theorem re-

lating to, 212
Moors, B. I\, 134, 135
Moulton, F. R., 218, 252
Multiplication, accuracy of, 12, 17

Negligible effects, criterion for, 341
Newton-Raphson method, 179

geometric significance of, 181
inherent error in, 183

Newton's formula
for backward interpolation, 50, 51
for forward interpolation, 48, 49

as a power series, 80
Normal equations, 364, 372

rule for writing down, 364, 372
Numerical differentiation, 114
Numerical integration, 117

by central-difference quadrature formu-
las, 124

by Euler’s formula, 139
by Gauss's formula, 131

by Simpson’s rule, 119
by Weddle’s rule, 12

1

Numerical solution of differential equa-
tions,

accuracy of, 266, 275
advantages and disadvantages of, 282
by Adams’s method, 267
by Milne's method, 280
by Runge-Kutta method, 273
by successive approximations, 218, 232
starting the, 222, 267

Partial derivatives of tabulated functions,

117
Pearson, Karl, 112
Percentage error, 3

probable error, 338
Picard, E. f 218
Polynomial, differences of a, 45
formula when nth differences are con-

stant, 385
Polynomials, use of approximating, 225
Powers and roots, accuracy of, 14, 15, 18
Precision and accuracy, difference be-

tween, 317
Precision measures, 318
computation of, from residuals, 324
geometric significance of, 322
relations between, 321

Principle of equal effects, 21

of Graeffe's method, 198
of iteration process, 218
of least squares, 304, 305, 307

Probability equation, 292
integral and its evaluation, 296
of errors lying between given limits, 286
of hitting a target, 299

Probable error, computation of, from re-

siduals, 324
definition of, 319
formulas for, 324, 327, 338
in indirect measurements, 338

meaning of, 337
of arithmetic and weighted means, 324
of a function, 338
of a gun, 301

Probable error and weight, relation be-
tween, 323

Product, accuracy of, 12, 17

relative error of, 12

Propagation of errors, 338

Quadrature, mechanical, 117

Quadrature formulas, caution in use of, 142
central-difference, 124
Euler’s, 139
Gauss's, 131

in equidistant ordinates, 117
Quotient, accuracy of, 13, 17

relative error of, 13

Reciprocals of roots, relations between
coefficients and, 208

Regula falsi method, 174
Rejection of observations and measure-

ments, rule for, 346
Relation between

derivatives and differences, 86
probable error and weight, 323
roots and coefficients, 201, 208

Relative accuracy of Simpson’s rules, 155
Relative error

and significant figures, 3

theorems concerning, 3, 6
of a product, 12

of a quotient, 13

probable, 338
Remainder term

in Bessel's formulas, 89, 90
in central-difference quadrature formu-

las, 166
in Euler’s formula, 169
in formula for double interpolation, 111,

112
in formula for interpolating to halves,

90, 911

in Gauss’s formula, 167
in Lagrange’s formula, 85, 91

in Newton’s formula (I), 86, 90
in Newton’s formula (11), 87, 90
in Simpson’s rule, 154, 155, 156, 157,

158, 159, 161
in Stirling's formula, 88, 90
in Weddle’s rule, 155

Residuals, 308
law of error for, 310
of plotted points, 357
sum of, 309
theorem concerning, 309
weighted, of a function, 370

Roots, complex, detection of, 206
computation of, by iteration, 184, 191

by Newton-Raphson method, 178, 187
by regula falsi method, 174

finding approximate values of, 171
Graeffe’s method for finding, 198
location of, 172

%
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Root-squaring process, principle of, 198
rule for applying, 200, 201
when to discontinue, 203

Rounding numbers, rule for, 2

Runge, Carl, 396
Runge-Kutta method, 273

applied to simultaneous equations, 275
inherent error in, 275
remarks on, 279
special case of, 274

Scheme for 12 ordinates, 396
for 24 ordinates, 401

Series, alternating, error in, 30
asymptotic, 140, 298
exponential, remainder term in, 31, 32
interpolation, 84
logarithmic, remainder term in, 32

Series approximations, accuracy of, 27
Sets of measurements, combination of,

when p.e.’s are given, 328
Significant figures, 2

in powers, roots, logs, and antilogs, 18
in products and quotients, 18
loss of, by subtraction, 12
relation of, to relative error, 3, 6

Simpson's rule, 119
error due to inaccurate data in, 163
formulas for error in, 156, 157, 158, 159,

161, 162
geometric significance of, 120

Simpson's three-eighths rule, 120
accuracy of, compared with one-third

rule, 155
Simultaneous algebraic and transcenden-

tal equations, solutions of, by itera-

tion, 191
by Newton-Raphson method, 187

Simultaneous differential equations, solu-

tion of,

by Runge-Kutta method, 275
by successive approximations, 232

Standard deviation, 323
Stirling's formula of interpolation, 60

as a power series, 80
compared with Bessel’s, 68, 69
when to use, 68, 69, 91

Substituted* polynomials, convergence in
~ case of, 260

Subtraction, accuracy of, 11
loss of significant figures by, 12

Tannery, Jules, 2

Target, probability of hitting, 299
Taylor's formula, 28

remainder term in, 28
Trapezoidal rule, 118

geometric significance of, 119
Trigonometric interpolation, 112
Trigonometric series, 388

case of 1 2 ordinates, 388
case of 24 ordinates, 398

Uhler, H. S., 380

Value of h for stipulated accuracy in in-

tegral, 162
Van Orstrand, C. E., 373

Weddle’s rule, 120
geometric significance of, 121
inherent error in, 155

Weierstrass, theorems of, 39
Weight, definition of, 306

of a function, 371
Weight and probable error, relation be-

tween, 323
Weighted mean, 309

normal equations, rule for writing down,
372












